Brak opisu

Ravi Hegde b2e2f34fad further dev 6 lat temu
.ipynb_checkpoints b2e2f34fad further dev 6 lat temu
.mypy_cache b2e2f34fad further dev 6 lat temu
__pycache__ b2e2f34fad further dev 6 lat temu
datasets 9af47cfec1 conv layer nets added and working 6 lat temu
materials 1d7b8580a1 again 6 lat temu
models 25d68667cb commit with assisted DE 6 lat temu
results 25d68667cb commit with assisted DE 6 lat temu
README e9a845a293 README created online with Bitbucket 6 lat temu
Untitled.ipynb b2e2f34fad further dev 6 lat temu
Untitled1.ipynb b2e2f34fad further dev 6 lat temu
barplotting.ipynb b2e2f34fad further dev 6 lat temu
datasize.pdf b2e2f34fad further dev 6 lat temu
de2.py b2e2f34fad further dev 6 lat temu
de_conv.ipynb b2e2f34fad further dev 6 lat temu
hypoptim.ipynb b2e2f34fad further dev 6 lat temu
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 lat temu
loss_defs.py b2e2f34fad further dev 6 lat temu
make_dataset.py 1d7b8580a1 again 6 lat temu
mxmodel.ipynb 25d68667cb commit with assisted DE 6 lat temu
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 lat temu
pymietest.ipynb 25d68667cb commit with assisted DE 6 lat temu
scatternet.ipynb b2e2f34fad further dev 6 lat temu
scipydiffe.ipynb b2e2f34fad further dev 6 lat temu
scnets.py 85e716f303 Almost ready for global optimization 6 lat temu
snlay.py b2e2f34fad further dev 6 lat temu

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.