Konstantin Ladutenko il y a 7 ans
Parent
commit
dd85fa5f06
1 fichiers modifiés avec 4 ajouts et 5 suppressions
  1. 4 5
      main.tex

+ 4 - 5
main.tex

@@ -529,14 +529,13 @@ license.
  Firstly, we analyze Mie coefficients (Fig.~\ref{mie-fdtd}(b) ) and
  the intensity distribution inside the non-excited
  Si nanoparticle as a function of its size for a fixed laser
- wavelength $\lambda = 800$ nm.  \red{We introduce $G^I$ factor of
-   asymmetry, corresponding to difference between the integral of
+ wavelength $\lambda = 800$ nm.  We introduce $G_I$ factor of
+   asymmetry, corresponding to difference between the volume integral of
    intensity in the front side of the nanoparticle to that in the back
    side normalized to their sum:
    $G_I = (I^{front}-I^{back})/(I^{front}+I^{back})$, where
-   $I^{front}=\int_{0}^{+R} |E(z)|^2dz$ and
-   $I^{back}=\int_{-R}^{0} |E(z)|^2dz$. (Is it correct???Or
-   integration over some angles are needed)} Fig.~\ref{mie-fdtd}(b)
+   $I^{front}=\int_{(z>0)}|E(z)|^2dv$ and
+   $I^{back}=\int_{(z<0)} |E(z)|^2dv$.  Fig.~\ref{mie-fdtd}(b)
  shows the $G$ factor as a function of the nanoparticle size. For the
  nanoparticles of sizes below the first magnetic dipole resonance, the
  intensity is enhanced in the front side as in Fig. \ref{mie-fdtd}(c)