123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- import json
- import base64
- import numpy as np
- import scipy.fft as fft
- import matplotlib.pyplot as plt
- class DataDecoder:
- def __init__(self, filename):
- self.data = ''
- with open(filename, 'r') as file:
- self.data = file.read()
- self.structed_data = json.loads(self.data)
- def getRawData(self, averaging_num=0, data_num=0, channel_num=0):
- for items in self.structed_data:
- if(items['averaging_num'] == averaging_num and items['data_num'] == data_num):
- for channel_data in items['channel_data']:
- if(channel_data['channel_num'] == channel_num):
- return channel_data['channel_data']
- return None
- def getDataDecoded(self, averaging_num=0, data_num=0, channel_num=0, points=10):
- rawData = self.getRawData(averaging_num, data_num, channel_num)
- edata = base64.b64decode(rawData.encode('utf-8'))
- arr = np.frombuffer(edata, dtype=np.int16, count=points, offset=0)
- return arr
- def getDataScaled(self, averaging_num=0, data_num=0, channel_num=0, points=10, range=5.0):
- decodedData = self.getDataDecoded(averaging_num, data_num, channel_num, points)
- return range * decodedData / 32768
-
- def getDataRate(self, averaging_num=0, data_num=0):
- for items in self.structed_data:
- if(items['averaging_num'] == averaging_num and items['data_num'] == data_num):
- return items['measurement_rate']
- def getDataSpectrum(self, averaging_num=0, data_num=0, channel_num=0, points=10, range=5.0, zero_fill=0, first_idx=0, last_idx=10):
- scaledData = self.getDataScaled(averaging_num, data_num, channel_num, points, range)
- zerofilledData = np.append(scaledData[first_idx:last_idx], np.zeros(zero_fill))
- rate = self.getDataRate()
- transferedData = fft.rfft(zerofilledData) * 2 / (last_idx-first_idx)
- freqs = fft.rfftfreq((last_idx-first_idx)+zero_fill, 1/rate)
- spectrum = np.abs(transferedData)
- phases = np.angle(transferedData)
- spect_dict = {'freqs': freqs,
- 'phases': phases,
- 'spectrum': spectrum}
- return spect_dict
-
- def getDataPoints(self, averaging_num=0, data_num=0):
- for items in self.structed_data:
- if(items['averaging_num'] == averaging_num and items['data_num'] == data_num):
- return items['measurement_points']
- #dec = DataDecoder('fid_test.json')
- #print('getRawData(0, 0, 1):')
- #print(dec.getRawData(0, 0, 1)) # ::getRawData(averagingIndex, dataTriggerIndex, channelIndex)
- #print('\n')
- #print('getDataDecoded(0, 0, 0, 100):')
- #a = dec.getDataDecoded(0, 0, 0, 100)
- #print(a[0:100]) # ::getDataDecoded(averagingIndex, dataTriggerIndex, channelIndex, count)
- #print('\n')
- #print('getDataScaled(0, 1, 1, 100, 0.1):')
- #a = dec.getDataDecoded(0, 0, 1, 80000)
- #rate = dec.getDataRate(0, 0)
- #print(a[500:1000])
- #t = np.arange(0, 80000 / rate, 1 / rate)
- #plt.plot(t, a)
- #plt.show()
- #print('\n')
- #print('getDataSpectrum(0, 1, 1, max_points, 5.0, max_points):')
- #points = dec.getDataPoints(0, 0)
- #spect_dict = dec.getDataSpectrum(0, 0, 1, points[0], 0.1, 0, 5000, 19600)
- #plt.plot(spect_dict['freqs'], spect_dict['spectrum'])
- #plt.show()
- #print('\n')
|