`timescale 1 ns / 1 ps module axis_interpolator # ( parameter integer AXIS_TDATA_WIDTH = 32, parameter integer CNTR_WIDTH = 32 ) ( // System signals input wire aclk, input wire aresetn, input wire [CNTR_WIDTH-1:0] cfg_data, // Slave side output wire s_axis_tready, input wire [AXIS_TDATA_WIDTH-1:0] s_axis_tdata, input wire s_axis_tvalid, // Master side input wire m_axis_tready, output wire [AXIS_TDATA_WIDTH-1:0] m_axis_tdata, output wire m_axis_tvalid ); reg [AXIS_TDATA_WIDTH-1:0] int_tdata_reg, int_tdata_next; reg [CNTR_WIDTH-1:0] int_cntr_reg, int_cntr_next; reg int_tvalid_reg, int_tvalid_next; reg int_tready_reg, int_tready_next; always @(posedge aclk) begin if(~aresetn) begin int_tdata_reg <= {(AXIS_TDATA_WIDTH){1'b0}}; int_tvalid_reg <= 1'b0; int_tready_reg <= 1'b0; int_cntr_reg <= {(CNTR_WIDTH){1'b0}}; end else begin int_tdata_reg <= int_tdata_next; int_tvalid_reg <= int_tvalid_next; int_tready_reg <= int_tready_next; int_cntr_reg <= int_cntr_next; end end always @* begin int_tdata_next = int_tdata_reg; int_tvalid_next = int_tvalid_reg; int_tready_next = int_tready_reg; int_cntr_next = int_cntr_reg; if(s_axis_tvalid & ~int_tvalid_reg) begin int_tdata_next = s_axis_tdata; int_tvalid_next = 1'b1; int_tready_next = 1'b1; end if(m_axis_tready & int_tvalid_reg) begin if(int_cntr_reg < cfg_data) begin int_cntr_next = int_cntr_reg + 1'b1; end else begin int_cntr_next = {(CNTR_WIDTH){1'b0}}; int_tdata_next = s_axis_tdata; int_tvalid_next = s_axis_tvalid; int_tready_next = s_axis_tvalid; end end if(s_axis_tvalid & int_tready_reg) begin int_tready_next = 1'b0; end end assign s_axis_tready = int_tready_reg; assign m_axis_tdata = int_tdata_reg; assign m_axis_tvalid = int_tvalid_reg; endmodule