Keine Beschreibung

Ovidio Peña Rodríguez 211fc8d216 Updated PIP package. vor 7 Monaten
.github 6e1421428b split web interface from nmie-applied (#74) vor 10 Monaten
debian 32e03214e1 Modified the default Debian package to be for Python 3. vor 4 Jahren
doc 57c7261705 updated fiel plotting script vor 9 Jahren
examples c517a6d355 Switch webapp into quasar vite-cli (#77) vor 9 Monaten
guiapp 18fa6cab57 [chore] fix deply script vor 9 Monaten
scattnlay f7eaa4fb66 initial match of supp fig 5 and simulation results vor 2 Jahren
src c517a6d355 Switch webapp into quasar vite-cli (#77) vor 9 Monaten
tests 1a0213bd6d [chore] version bump vor 10 Monaten
utils f841e1886f introducing config.ts vor 3 Jahren
vue-cli3-webapp f841e1886f introducing config.ts vor 3 Jahren
.clang-format 360f3b154c Move pb11 conversion functions to a separate file vor 2 Jahren
.gitignore c517a6d355 Switch webapp into quasar vite-cli (#77) vor 9 Monaten
.gitmodules c517a6d355 Switch webapp into quasar vite-cli (#77) vor 9 Monaten
CHANGES 1b7786ad5a Initial commit based on Ovidio version of python-scattnlay 0.3.0 vor 10 Jahren
CMakeLists.txt 1a0213bd6d [chore] version bump vor 10 Monaten
COPYING 48e7762a08 Changed version number and made some small fixes. vor 5 Jahren
LICENSE 1b7786ad5a Initial commit based on Ovidio version of python-scattnlay 0.3.0 vor 10 Jahren
MANIFEST.in 4165e55421 Completed port from Cython to pybind11. vor 5 Jahren
Makefile c517a6d355 Switch webapp into quasar vite-cli (#77) vor 9 Monaten
PKG-INFO 48e7762a08 Changed version number and made some small fixes. vor 5 Jahren
README.md 211fc8d216 Updated PIP package. vor 7 Monaten
go.sh e8024478b5 change missed .h to .hpp vor 8 Jahren
push-to-github.sh eea51ce5ca Changes to push script vor 10 Jahren
pyproject.toml a91e5a2ca2 Updated PIP package. vor 7 Monaten
requirements.txt f05aa36d40 initial python tests on GitHub vor 2 Jahren
setup.cfg 71a297d952 Updated copyright and prepared the code to add scattnlay to PyPI. vor 6 Jahren
setup.py 1a0213bd6d [chore] version bump vor 10 Monaten
tox.ini dc20b92193 Add MacOS to GitHub Actions tests (#72) vor 10 Monaten

README.md

output example Output example: Field distribution inside layered Si\Ag\Si sphere and Poynting vector distribution in Ag sphere with powerflow lines calculated with Scattnlay (scripts field-SiAgSi-flow.py and field-Ag-flow.py from example section as revision ).

Discuss:

Try to join our Gitter chat:

Fill the issue here: Issues.

Stable releases

  • Version 2.0.1 (Jan 17, 2017). DOI
  • Version 2.0.0 (Apr 1, 2016).
  • Version 1.0.0 (Nov 22, 2014).

How to use scattnlay

Table of contents:

Mie theory calculator web application

Limited web version is available at https://physics.ifmo.ru/mie/

Compile Code

To compile the source you will need a C++11 capable compiler. To use optional MultiPrecision feature you need to install Boost.Multiprecision library (package names are given in Ubuntu\Debian notation):

  • libboost-all-dev (>= 1.58.0)

To compile the Python extension you need NumPy:

  • python-numpy (>= 1.0)
  • python-all-dev (any version)
  • python-numpy-dev (any version)
  • pybind11 (any version)

And to compile the Debian package you need some tools:

  • debhelper (>=7.0.0)
  • dh-python (any version)
  • cdbs (>= 0.4.49)

Compilation options

  • make source - Create source package for Python extension
  • make ext - Create Python extension using C++ code
  • make install - Install Python extension on local system
  • make rpm - Generate a rpm package for Python extension
  • make deb - Generate a deb package for Python extension
  • make standalone - Create standalone programs (scattnlay and fieldnlay)
  • make clean - Delete temporal files

There are also an experimental CMake project and it is possible to compile into JavaScript module (using Emscripten compiler).

Python module

To build and install Python module run from the source code directory:

pip install . --user

Binary install

Binary files for Ubuntu and derivative distributions can be found at Launchpad To install it you must configure the repository:

sudo add-apt-repository ppa:ovidio/scattering
sudo apt update

and then you simply install the package:

sudo apt install python-scattnlay

You can also install it from PyPi via

sudo pip install scattnlay

You can also git clone and pip install -e . to develop python package.

Use

  1. Python library
    • Use scattnlay directly
from scattnlay import scattnlay, fieldnlay
...
x = ...
m = ...
coords = ...
terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
terms, E, H = fieldnlay(x, m, coords)
...
  • Execute some of the test scripts (located in the folder 'tests/python') Example:
./test01.py
  1. Standalone program
    • Execute scattnlay directly:
scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment]
  • Execute fieldnlay directly:
fieldnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] -p xi xf nx yi yf ny zi zf nz [-c comment]
  • Execute some of the test scripts (located in the folder 'tests/shell'):
./test01.sh > test01.csv
  1. C++ library

Scattnlay "Hello world!" example:

    try {
      nmie::MultiLayerMieApplied<double> multi_layer_mie; 
      multi_layer_mie.AddTargetLayer(core_width, index_Si);
      multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
      multi_layer_mie.AddTargetLayer(outer_width, index_Si);
      multi_layer_mie.SetWavelength(WL);
      multi_layer_mie.RunMieCalculation();
      double Qabs = multi_layer_mie.GetQabs();
      printf("Qabs = %g\n", Qabs);
    } catch( const std::invalid_argument& ia ) {
      // Will catch if  multi_layer_mie fails or other errors.
      std::cerr << "Invalid argument: " << ia.what() << std::endl;
      return -1;
    }

The complete example-minimal.cc and a bit more complicated example-get-Mie.cc can be found in example directory along with go-cc-examples.sh script with build commands.

example-get-Mie.cc can be compiled using double precision or multiple precision (just include -DMULTI_PRECISION=200 to use 200 digits for calculations).

Related papers

  1. O. Peña and U. Pal, "Scattering of electromagnetic radiation by a multilayered sphere," Comput. Phys. Commun. 180, 2348-2354 (2009). http://dx.doi.org/10.1016/j.cpc.2009.07.010

  2. K. Ladutenko, O. Peña-Rodríguez, I. Melchakova, I. Yagupov and P. Belov, "Reduction of scattering using thin all-dielectric shells designed by stochastic optimizer," J. Appl. Phys. 116, 184508 (2014). http://dx.doi.org/10.1063/1.4900529

  3. K. Ladutenko, P. Belov, O. Peña-Rodríguez, A. Mirzaei, A. Miroshnichenko and I. Shadrivov, "Superabsorption of light by nanoparticles," Nanoscale 7, 18897-18901 (2015). http://dx.doi.org/10.1039/C5NR05468K

  4. K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie calculation of electromagnetic near-field for a multilayered sphere," Comp. Phys. Comm. 214, 225-230 (2017). http://dx.doi.org/j.cpc.2017.01.017

Acknowledgment

We expect that all publications describing work using this software, or all commercial products using it, cite at least one of the following references:

[1] O. Peña and U. Pal, "Scattering of electromagnetic radiation

by a multilayered sphere," Computer Physics Communications,
vol. 180, Nov. 2009, pp. 2348-2354.

[2] K. Ladutenko, U. Pal, A. Rivera and O. Peña-Rodríguez, "Mie calculation

of electromagnetic near-field for a multilayered sphere,"
Computer Physics Communications, vol. 214, May 2017, pp. 225-230.

License

GPL v3+