example-minimal.cc 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
  4. // //
  5. // This file is part of scattnlay //
  6. // //
  7. // This program is free software: you can redistribute it and/or modify //
  8. // it under the terms of the GNU General Public License as published by //
  9. // the Free Software Foundation, either version 3 of the License, or //
  10. // (at your option) any later version. //
  11. // //
  12. // This program is distributed in the hope that it will be useful, //
  13. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  14. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  15. // GNU General Public License for more details. //
  16. // //
  17. // The only additional remark is that we expect that all publications //
  18. // describing work using this software, or all commercial products //
  19. // using it, cite the following reference: //
  20. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  21. // a multilayered sphere," Computer Physics Communications, //
  22. // vol. 180, Nov. 2009, pp. 2348-2354. //
  23. // //
  24. // You should have received a copy of the GNU General Public License //
  25. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  26. //**********************************************************************************//
  27. // This program evaluates absorption of a triple layered nanoparticle
  28. #include <complex>
  29. #include <cstdio>
  30. #include <string>
  31. #include "../src/nmie-applied.hpp"
  32. #include "../src/nmie-applied-impl.hpp"
  33. int main(int , char **) {
  34. try {
  35. nmie::MultiLayerMieApplied<double> multi_layer_mie;
  36. const std::complex<double> epsilon_Si(18.4631066585, 0.6259727805);
  37. const std::complex<double> epsilon_Ag(-8.5014154589, 0.7585845411);
  38. const std::complex<double> index_Si = std::sqrt(epsilon_Si);
  39. const std::complex<double> index_Ag = std::sqrt(epsilon_Ag);
  40. double WL=500; //nm
  41. double core_width = 5.27; //nm Si
  42. double inner_width = 8.22; //nm Ag
  43. double outer_width = 67.91; //nm Si
  44. core_width = 5.27; //nm Si
  45. inner_width = 8.22; //nm Ag
  46. outer_width = 67.91; //nm Si
  47. multi_layer_mie.AddTargetLayer(core_width, index_Si);
  48. multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
  49. multi_layer_mie.AddTargetLayer(outer_width, index_Si);
  50. multi_layer_mie.SetWavelength(WL);
  51. multi_layer_mie.RunMieCalculation();
  52. double Qabs = multi_layer_mie.GetQabs();
  53. printf("Qabs = %g\n", Qabs);
  54. } catch( const std::invalid_argument& ia ) {
  55. // Will catch if multi_layer_mie fails or other errors.
  56. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  57. return -1;
  58. }
  59. return 0;
  60. }