test04.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2017 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite at least one of the following references:
  21. # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
  25. # calculation of electromagnetic near-field for a multilayered
  26. # sphere," Computer Physics Communications, vol. 214, May 2017,
  27. # pp. 225-230.
  28. #
  29. # You should have received a copy of the GNU General Public License
  30. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  31. # This test case calculates the differential scattering
  32. # cross section from a Luneburg lens, as described in:
  33. # B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
  34. # The Luneburg lens is a sphere of radius a, with a
  35. # radially-varying index of refraction, given by:
  36. # m(r) = [2 - (r/a)**2]**(1/2)
  37. # For the calculations, the Luneburg lens was approximated
  38. # as a multilayered sphere with 500 equally spaced layers.
  39. # The refractive index of each layer is defined to be equal to
  40. # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**2]**(1/2),
  41. # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
  42. # parameter in the lth layer is xl = l*xL/500. According to
  43. # geometrical optics theory, the differential cross section
  44. # can be expressed as:
  45. # d(Csca)/d(a**2*Omega) = cos(Theta)
  46. # The differential cross section from wave optics is:
  47. # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2
  48. from scattnlay import scattnlay
  49. import numpy as np
  50. nL = 500
  51. Xmax = 60.0
  52. x = np.array([np.linspace(Xmax/nL, Xmax, nL)], dtype = np.float64)
  53. m = np.array((np.sqrt((2.0 - (x[0]/Xmax - 0.5/nL)**2.0))), dtype = np.complex128)
  54. theta = np.linspace(0.0, np.pi, 1001, dtype = np.float64)
  55. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m, theta)
  56. S11 = S1[0].real*S1[0].real + S1[0].imag*S1[0].imag + S2[0].real*S2[0].real + S2[0].imag*S2[0].imag
  57. result = np.vstack((theta*180.0/np.pi, S11/(2.0*Xmax*Xmax), np.cos(theta))).transpose()
  58. try:
  59. import matplotlib.pyplot as plt
  60. plt.plot(result[ : , 0], result[ : , 1], 'k', result[ : , 0], result[ : , 2], 'r')
  61. ax = plt.gca()
  62. ax.set_yscale('log')
  63. ax.set_ylim(1e-4, 1e3)
  64. plt.xlabel('Theta')
  65. plt.draw()
  66. plt.show()
  67. finally:
  68. np.savetxt("test04.txt", result, fmt = "%.5f")
  69. print(result)