123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- #!/usr/bin/env python3
- import mpmath as mp
- import mpmath_riccati_bessel as mrb
- import mpmath_input_arguments as mia
- import os.path
- class TestData:
- def __init__(self, list_to_parse, filetype):
- self.filetype = filetype
- if self.filetype == 'c++':
- self.cpp_parse(list_to_parse)
- else:
- raise NotImplementedError("Only C++ files *.hpp parsing was implemented")
- def cpp_parse(self, list_to_parse):
- self.comment = list_to_parse[0]
- if self.comment[:2] != '//': raise ValueError('Not a comment')
- self.typeline = list_to_parse[1]
- if 'std::vector' not in self.typeline: raise ValueError('Unexpected C++ container')
- self.testname = list_to_parse[2]
- self.opening = list_to_parse[3]
- if self.opening != '= {': raise ValueError('For C++ we expect opeing with = {');
- self.ending = list_to_parse[-1]
- if self.ending != '};': raise ValueError('For C++ we expect closing };')
- self.evaluated_data = list_to_parse[4:-1]
- def get_string(self):
- out_sting = self.comment + '\n' + self.typeline + '\n' + self.testname + '\n' + self.opening + '\n'
- for result in self.evaluated_data:
- out_sting += result + '\n'
- out_sting += self.ending + '\n'
- return out_sting
- class UpdateSpecialFunctionsEvaluations:
- def __init__(self, filename='default_out.hpp', complex_arguments=[],
- output_dps=16, max_num_elements_of_nlist=51):
- self.evaluated_data = []
- self.test_setup = []
- self.filename = filename
- self.read_evaluated_data()
- self.complex_arguments = complex_arguments
- self.output_dps = output_dps
- self.max_num_elements_of_nlist = max_num_elements_of_nlist
- def read_evaluated_data(self):
- self.filetype = 'undefined'
- if self.filename.endswith('.hpp'):
- self.filetype = 'c++'
- if self.filename.endswith('.f90'):
- self.filetype = 'fortran'
- if not os.path.exists(self.filename):
- print("WARNING! Found no data file:", self.filename)
- return
- with open(self.filename, 'r') as in_file:
- content = in_file.readlines()
- content = [x.strip() for x in content]
- while '' in content:
- record_end_index = content.index('')
- new_record = content[:record_end_index]
- content = content[record_end_index + 1:]
- self.add_record(new_record)
- self.add_record(content)
- def add_record(self, new_record):
- if len(new_record) == 0: return
- if len(new_record) < 6: raise ValueError('Not enough lines in record:', new_record)
- self.evaluated_data.append(TestData(new_record, self.filetype))
- def get_file_content(self):
- self.evaluated_data.sort(key=lambda x: x.testname) # , reverse=True)
- out_string = ''
- for record in self.evaluated_data:
- out_string += record.get_string() + '\n'
- return out_string[:-1]
- def remove(self, testname):
- for i, result in enumerate(self.evaluated_data):
- if result.testname == testname:
- del self.evaluated_data[i]
- def get_n_list(self, z, max_number_of_elements=10):
- nmax = mrb.LeRu_cutoff(z)*10
- factor = nmax ** (1 / (max_number_of_elements - 2))
- n_list = [int(factor ** i) for i in range(max_number_of_elements - 1)]
- n_list.append(0)
- n_set = set(n_list)
- return sorted(n_set)
- def compose_result_string(self, mpf_x, mpf_m, n, mpf_value, output_dps):
- return ('{'+
- mp.nstr(mpf_x, output_dps * 2) + ',{' +
- mp.nstr(mpf_m.real, output_dps * 2) + ',' +
- mp.nstr(mpf_m.imag, output_dps * 2) + '},' +
- str(n) + ',{' +
- mp.nstr(mpf_value.real, output_dps) + ',' +
- mp.nstr(mpf_value.imag, output_dps) + '},' +
- mp.nstr(mp.fabs(mpf_value.real * 10 ** -output_dps), 2) + ',' +
- mp.nstr(mp.fabs(mpf_value.imag * 10 ** -output_dps), 2) +
- '},')
- def get_test_data_nlist(self, z_record, output_dps, n, func):
- isNeedMoreDPS = False
- x = str(z_record[0])
- mr = str(z_record[1][0])
- mi = str(z_record[1][1])
- z_str = ''
- try:
- mpf_x = mp.mpf(x)
- mpf_m = mp.mpc(mr, mi)
- z = mpf_x*mpf_m
- if self.is_only_x: z = mp.mpf(x)
- if self.is_xm:
- mpf_value = func(n, mpf_x, mpf_m)
- else:
- mpf_value = func(n, z)
- z_str = self.compose_result_string(mpf_x, mpf_m, n, mpf_value, output_dps)
- if mp.nstr(mpf_value.real, output_dps) == '0.0' \
- or mp.nstr(mpf_value.imag, output_dps) == '0.0':
- isNeedMoreDPS = True
- except:
- isNeedMoreDPS = True
- return z_str, isNeedMoreDPS
- def get_test_data(self, Du_test, output_dps, max_num_elements_of_n_list, func, funcname):
- output_list = ['// x, complex(m), n, complex(f(n,z)), abs_err_real, abs_err_imag',
- 'std::vector< std::tuple< nmie::FloatType, std::complex<nmie::FloatType>, int, std::complex<nmie::FloatType>, nmie::FloatType, nmie::FloatType > >',
- str(funcname) + '_test_' + str(output_dps) + 'digits', '= {']
- for z_record in Du_test:
- x = str(z_record[0])
- mr = str(z_record[1][0])
- mi = str(z_record[1][1])
- mp.mp.dps = 20
- z = mp.mpf(x) * mp.mpc(mr, mi)
- n_list = self.get_n_list(z, max_num_elements_of_n_list)
- if z_record[4] == 'Yang': n_list = [0, 1, 30, 50, 60, 70, 75, 80, 85, 90, 99, 116, 130]
- print(z, n_list)
- failed_evaluations = 0
- for n in n_list:
- mp.mp.dps = output_dps
- old_z_string, isNeedMoreDPS = self.get_test_data_nlist(z_record, output_dps, n, func, )
- mp.mp.dps = int(output_dps*1.41)
- new_z_string, isNeedMoreDPS = self.get_test_data_nlist(z_record, output_dps, n, func)
- while old_z_string != new_z_string \
- or isNeedMoreDPS:
- new_dps = int(mp.mp.dps * 1.41)
- if new_dps > 300: break
- mp.mp.dps = new_dps
- print("New dps = ", mp.mp.dps, 'n =', n, ' (max ', n_list[-1], ') for z =', z, ' ', end='')
- old_z_string = new_z_string
- new_z_string, isNeedMoreDPS = self.get_test_data_nlist(z_record, output_dps, n, func)
- if new_z_string != '':
- output_list.append(new_z_string)
- else:
- failed_evaluations += 1
- # break
- result_str = "All done!"
- if failed_evaluations > 0: result_str = " FAILED!"
- print("\n", result_str, "Failed evaluations ", failed_evaluations, ' of ', len(n_list))
- output_list.append('};')
- return output_list
- def run_test(self, func, funcname, is_only_x=False, is_xm=False):
- self.is_only_x = is_only_x
- self.is_xm = is_xm
- self.remove_argument_duplicates()
- out_list_result = self.get_test_data(self.complex_arguments, self.output_dps,
- self.max_num_elements_of_nlist,
- func, funcname)
- testname = str(funcname) + '_test_' + str(self.output_dps) + 'digits'
- self.remove(testname)
- self.add_record(out_list_result)
- def remove_argument_duplicates(self):
- print("Arguments in input: ", len(self.complex_arguments))
- mp.mp.dps = 20
- self.complex_arguments.sort()
- filtered_list = []
- filtered_list.append(self.complex_arguments[0])
- for i in range(1, len(self.complex_arguments)):
- # if x and m are the same: continue
- if (filtered_list[-1][0] == self.complex_arguments[i][0] and
- filtered_list[-1][1] == self.complex_arguments[i][1]):
- continue
- # argument list is sorted, so when only x is needed
- # keep the record with the largest m
- if (self.is_only_x
- and filtered_list[-1][0] == self.complex_arguments[i][0]):
- # continue
- del filtered_list[-1]
- filtered_list.append(self.complex_arguments[i])
- self.complex_arguments = filtered_list
- # print(self.complex_arguments)
- print("Arguments after filtering: ", len(self.complex_arguments))
- # exit(0)
- def main():
- sf_evals = UpdateSpecialFunctionsEvaluations(filename='test_spec_functions_data.hpp',
- complex_arguments=mia.complex_arguments,
- output_dps=30, max_num_elements_of_nlist=51)
- # output_dps=7, max_num_elements_of_nlist=51)
- # output_dps=5, max_num_elements_of_nlist=3)
- # sf_evals.run_test(mrb.D1, 'D1')
- #
- # sf_evals.run_test(mrb.D3, 'D3')
- # sf_evals.run_test(mrb.psi, 'psi', is_only_x=True)
- # sf_evals.run_test(mrb.xi, 'xi', is_only_x=True)
- # # In literature Zeta or Ksi denote the Riccati-Bessel function of third kind.
- # sf_evals.run_test(mrb.ksi, 'zeta', is_only_x=True)
- # sf_evals.run_test(mrb.an, 'an', is_xm=True)
- # sf_evals.run_test(mrb.bn, 'bn', is_xm=True)
- # sf_evals.run_test(mrb.psi, 'psi')
- # sf_evals.run_test(mrb.ksi, 'zeta')
- # sf_evals.run_test(mrb.psi_div_ksi, 'psi_div_ksi')
- # sf_evals.run_test(mrb.psi_mul_ksi, 'psi_mul_zeta', is_only_x=True)
- # sf_evals.run_test(mrb.psi_mul_ksi, 'psi_mul_zeta')
- # sf_evals.run_test(mrb.psi_div_xi, 'psi_div_xi')
- with open(sf_evals.filename, 'w') as out_file:
- out_file.write(sf_evals.get_file_content())
- # for record in mia.complex_arguments:
- # mp.mp.dps = 20
- # output_dps = 16
- # x = mp.mpf(str(record[0]))
- # mr = str(record[1][0])
- # mi = str(record[1][1])
- # m = mp.mpc(mr, mi)
- # Qext_ref = record[2]
- # Qsca_ref = record[3]
- # test_case = record[4]
- # nmax = int(x + 4.05*x**(1./3.) + 2)+2+28
- # print(f"\n ===== test case: {test_case} =====", flush=True)
- # print(f"x={x}, m={m}, N={nmax} \nQsca_ref = {Qsca_ref} \tQext_ref = {Qext_ref}", flush=True)
- # Qext_mp = mrb.Qext(x,m,nmax, output_dps)
- # Qsca_mp = mrb.Qsca(x,m,nmax, output_dps)
- # print(f"Qsca_mp = {mp.nstr(Qsca_mp[-1],output_dps)} \tQext_mp = {mp.nstr(Qext_mp[-1],output_dps)}", flush=True)
- # print(mp.nstr(Qsca_mp,output_dps))
- # print(mp.nstr(Qext_mp,output_dps))
- # n=1
- # print(f'n={n}, x={x}, m={m}\nbn[{n}]={mp.nstr(mrb.bn(n,x,m), output_dps)}')
- main()
|