123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- //**********************************************************************************
- // Copyright (C) 2009-2016 Ovidio Pena <ovidio@bytesfall.com>
- // Copyright (C) 2013-2016 Konstantin Ladutenko <kostyfisik@gmail.com>
- //
- // This file is part of scattnlay
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // The only additional remark is that we expect that all publications
- // describing work using this software, or all commercial products
- // using it, cite the following reference:
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- // a multilayered sphere," Computer Physics Communications,
- // vol. 180, Nov. 2009, pp. 2348-2354.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program. If not, see <http://www.gnu.org/licenses/>.
- //**********************************************************************************
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <time.h>
- #include <algorithm>
- #include <complex>
- #include <functional>
- #include <iostream>
- #include <stdexcept>
- #include <string>
- #include <vector>
- // sudo aptitude install libgoogle-perftools-dev
- // #include <google/heap-profiler.h>
- #include "../../src/nmie-applied-impl.hpp"
- timespec diff(timespec start, timespec end);
- const double PI = 3.14159265358979323846;
- template <class T>
- inline T pow2(const T value) {
- return value * value;
- }
- //***********************************************************************************
- // This is the main function of 'scattnlay', here we read the parameters as
- // arguments passed to the program which should be executed with the following
- // syntaxis:
- // ./scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c
- // comment]
- //
- // When all the parameters were correctly passed we setup the integer L (the
- // number of layers) and the arrays x and m, containing the size parameters and
- // refractive indexes of the layers, respectively and call the function nMie.
- // If the calculation is successful the results are printed with the following
- // format:
- //
- // * If no comment was passed:
- // 'Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo'
- //
- // * If a comment was passed:
- // 'comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo'
- //***********************************************************************************
- int main(int argc, char* argv[]) {
- try {
- std::vector<std::string> args;
- args.assign(argv, argv + argc);
- std::string error_msg(std::string("Insufficient parameters.\nUsage: ") +
- args[0] +
- " -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] " +
- "[-t ti tf nt] [-c comment]\n");
- enum mode_states {
- read_L,
- read_x,
- read_mr,
- read_mi,
- read_ti,
- read_tf,
- read_nt,
- read_comment
- };
- // for (auto arg : args) std::cout<< arg <<std::endl;
- std::string comment;
- int has_comment = 0;
- int i, l, L = 0;
- std::vector<double> x, Theta;
- std::vector<std::complex<double> > m, S1, S2;
- double Qext, Qabs, Qsca, Qbk, Qpr, g, Albedo;
- std::vector<std::complex<double> > mw, S1w, S2w;
- double Qextw, Qabsw, Qscaw, Qbkw, Qprw, gw, Albedow;
- double ti = 0.0, tf = 90.0;
- int nt = 0;
- if (argc < 5)
- throw std::invalid_argument(error_msg);
- // strcpy(comment, "");
- // for (i = 1; i < argc; i++) {
- int mode = -1;
- double tmp_mr;
- for (auto arg : args) {
- // For each arg in args list we detect the change of the current
- // read mode or read the arg. The reading args algorithm works
- // as a finite-state machine.
- // Detecting new read mode (if it is a valid -key)
- if (arg == "-l") {
- mode = read_L;
- continue;
- }
- if (arg == "-t") {
- if ((mode != read_x) && (mode != read_comment))
- throw std::invalid_argument(std::string("Unfinished layer!\n") +
- error_msg);
- mode = read_ti;
- continue;
- }
- if (arg == "-c") {
- if ((mode != read_x) && (mode != read_nt))
- throw std::invalid_argument(
- std::string("Unfinished layer or theta!\n") + error_msg);
- mode = read_comment;
- continue;
- }
- // Reading data. For invalid date the exception will be thrown
- // with the std:: and catched in the end.
- if (mode == read_L) {
- L = std::stoi(arg);
- mode = read_x;
- continue;
- }
- if (mode == read_x) {
- x.push_back(std::stod(arg));
- mode = read_mr;
- continue;
- }
- if (mode == read_mr) {
- tmp_mr = std::stod(arg);
- mode = read_mi;
- continue;
- }
- if (mode == read_mi) {
- m.push_back(std::complex<double>(tmp_mr, std::stod(arg)));
- mode = read_x;
- continue;
- }
- if (mode == read_ti) {
- ti = std::stod(arg);
- mode = read_tf;
- continue;
- }
- if (mode == read_tf) {
- tf = std::stod(arg);
- mode = read_nt;
- continue;
- }
- if (mode == read_nt) {
- nt = std::stoi(arg);
- Theta.resize(nt);
- S1.resize(nt);
- S2.resize(nt);
- S1w.resize(nt);
- S2w.resize(nt);
- continue;
- }
- if (mode == read_comment) {
- comment = arg;
- has_comment = 1;
- continue;
- }
- }
- if ((x.size() != m.size()) || (L != x.size()))
- throw std::invalid_argument(std::string("Broken structure!\n") +
- error_msg);
- if ((0 == m.size()) || (0 == x.size()))
- throw std::invalid_argument(std::string("Empty structure!\n") +
- error_msg);
- if (nt < 0) {
- printf("Error reading Theta.\n");
- return -1;
- } else if (nt == 1) {
- Theta[0] = ti * PI / 180.0;
- } else {
- for (i = 0; i < nt; i++) {
- Theta[i] = (ti + (double)i * (tf - ti) / (nt - 1)) * PI / 180.0;
- }
- }
- timespec time1, time2;
- long cpptime_nsec, best_cpp;
- long ctime_nsec, best_c;
- long cpptime_sec, ctime_sec;
- long repeats = 150;
- // HeapProfilerStart("heapprof");
- printf("Start\n");
- do {
- clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
- for (int i = 0; i < repeats; ++i) {
- nmie::nMie(L, x, m, nt, Theta, &Qextw, &Qscaw, &Qabsw, &Qbkw, &Qprw,
- &gw, &Albedow, S1w, S2w);
- // break;
- }
- clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
- cpptime_nsec = diff(time1, time2).tv_nsec;
- cpptime_sec = diff(time1, time2).tv_sec;
- printf("-- C++ time consumed %lg sec\n",
- cpptime_sec + (cpptime_nsec / 1e9));
- repeats *= 10;
- // break;
- } while (cpptime_sec < 3 && ctime_sec < 3);
- printf("Finish\n");
- // if (has_comment) {
- // printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n",
- // comment.c_str(), Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow);
- // } else {
- // printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n", Qextw,
- // Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow);
- // }
- // if (nt > 0) {
- // printf(" Theta, S1.r, S1.i, S2.r, S2.i\n");
- // for (i = 0; i < nt; i++) {
- // printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e \n", Theta[i]*180.0/PI,
- // S1w[i].real(), S1w[i].imag(), S2w[i].real(), S2w[i].imag());
- // }
- // }
- } catch (const std::invalid_argument& ia) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- return -1;
- }
- return 0;
- }
- timespec diff(timespec start, timespec end) {
- timespec temp;
- if ((end.tv_nsec - start.tv_nsec) < 0) {
- temp.tv_sec = end.tv_sec - start.tv_sec - 1;
- temp.tv_nsec = 1000000000 + end.tv_nsec - start.tv_nsec;
- } else {
- temp.tv_sec = end.tv_sec - start.tv_sec;
- temp.tv_nsec = end.tv_nsec - start.tv_nsec;
- }
- return temp;
- }
|