12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2017 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2017 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite at least one of the following references:
- # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
- # calculation of electromagnetic near-field for a multilayered
- # sphere," Computer Physics Communications, vol. 214, May 2017,
- # pp. 225-230.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the optical force over a silver nanoparticle,
- # as a function of the irradiance and the radius.
- from scattnlay import scattnlay
- import numpy as np
- from scipy.constants import pi, c
- radius = np.linspace(0.5, 180.0, 360)
- nAg = np.sqrt(-4.0 + 0.7j)
- wl = 400.0
- x = 2.0*pi*np.array([radius], dtype = np.float64).transpose()/wl
- m = np.array([nAg], dtype = np.complex128)
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
- F = pi*Qpr*radius*radius/c/1e9
- result = np.vstack((radius, 1e11*F, 1e13*F, 1e15*F)).transpose()
- try:
- import matplotlib.pyplot as plt
- plt.figure(1)
- plt.subplot(311)
- plt.plot(radius, 1e11*F, 'k', label = '10$^{11}$ W/m$^2$')
- plt.plot(radius, 1e13*F, 'b', label = '10$^{13}$ W/m$^2$')
- plt.plot(radius, 1e15*F, 'g', label = '10$^{15}$ W/m$^2$')
- plt.ylabel('F (nN)')
- plt.legend(loc = 4)
- ax = plt.gca()
- ax.set_yscale('log')
- plt.subplot(312)
- plt.plot(radius, g, 'r', label = 'g')
- plt.ylabel('g')
- plt.subplot(313)
- plt.plot(radius, Qext, 'k', label = 'Q$_{ext}$')
- plt.plot(radius, Qsca, 'b', label = 'Q$_{sca}$')
- plt.plot(radius, Qpr, 'g', label = 'Q$_{pr}$')
- plt.ylabel('Q')
- plt.legend()
- plt.xlabel('R (nm)')
-
- plt.show()
- finally:
- #np.savetxt("test_force.txt", result, fmt = "%.5e")
- print result
|