123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
- # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
- # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- from fieldplot import fieldplot
- import numpy as np
- import cmath
- epsilon_Si = 13.64 + 0.047j
- epsilon_Ag = -28.05 + 1.525j
- # epsilon_Si = 2.0 + 0.047j
- # epsilon_Ag = -2.0 + 1.525j
- # air = 1
- # epsilon_Si = air*2
- # epsilon_Ag = air*2
- index_Si = np.sqrt(epsilon_Si)
- index_Ag = np.sqrt(epsilon_Ag)
- print(index_Si)
- print(index_Ag)
- # # Values for 800 nm, taken from http://refractiveindex.info/
- # index_Si = 3.69410 + 0.0065435j
- # index_Ag = 0.18599 + 4.9886j
- WL=800 #nm
- core_width = 17.74 #nm Si
- inner_width = 23.31 #nm Ag
- outer_width = 22.95 #nm Si
- core_r = core_width
- inner_r = core_r+inner_width
- outer_r = inner_r+outer_width
- # n1 = 1.53413
- # n2 = 0.565838 + 7.23262j
- nm = 1.0
- # WL=354 #nm
- # core_r = WL/20.0
- # epsilon_Ag = -2.0 + 0.28j
- # index_Ag = np.sqrt(epsilon_Ag)
- # x = 2.0*np.pi*np.array([core_r/3., core_r/2., core_r], dtype = np.float64)/WL
- # m = np.array((index_Ag, index_Ag, index_Ag), dtype = np.complex128)/nm
- x = 2.0*np.pi*np.array([core_r, inner_r, outer_r], dtype = np.float64)/WL
- m = np.array((index_Si, index_Ag, index_Si), dtype = np.complex128)/nm
- print("x =", x)
- print("m =", m)
- npts = 501
- factor=2.2
- flow_total = 21
- #crossplane='XZ'
- #crossplane='YZ'
- #crossplane='XY'
- crossplane='XYZ'
- # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
- field_to_plot='Eabs'
- #field_to_plot='angleEx'
- comment='SiAgSi-absorber-flow'
- WL_units='nm'
- import matplotlib.pyplot as plt
- fig, axs = plt.subplots(1,1)#, sharey=True, sharex=True)
- fig.tight_layout()
- fieldplot(fig, axs, x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total,
- subplot_label=' ', outline_width=1.5, draw_shell=True)
- #fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total)
- # for ax in axs:
- # ax.locator_params(axis='x',nbins=5)
- # ax.locator_params(axis='y',nbins=5)
- fig.subplots_adjust(hspace=0.3, wspace=-0.1)
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
- +field_to_plot+".pdf",pad_inches=0.02, bbox_inches='tight')
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
|