123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Ag nanoparticle.
- from scattnlay import fieldnlay, scattnlay
- from fieldplot import fieldplot
- import numpy as np
- import cmath
- # # a)
- # WL=400 #nm
- # core_r = WL/20.0
- # epsilon_Ag = -2.0 + 10.0j
- # # b)
- # WL=400 #nm
- # core_r = WL/20.0
- # epsilon_Ag = -2.0 + 1.0j
- # c)
- WL = 354 # nm
- core_r = WL / 20.0
- epsilon_Ag = -2.0 + 0.28j
- # d)
- # WL=367 #nm
- # core_r = WL/20.0
- # epsilon_Ag = -2.71 + 0.25j
- # WL=500 #nm
- # core_r = 615.0
- # epsilon_Ag = 4.0
- index_Ag = np.sqrt(epsilon_Ag)
- # n1 = 1.53413
- # n2 = 0.565838 + 7.23262j
- nm = 1.0
- x = 2.0 * np.pi * np.array([core_r / 4.0 * 3.0, core_r], dtype=np.float64) / WL
- m = np.array((index_Ag, index_Ag), dtype=np.complex128) / nm
- print("x =", x)
- print("m =", m)
- comment = 'bulk-WL' + str(WL) + 'nm_r' + str(core_r) + 'nm_epsilon' + str(epsilon_Ag) + '-flow'
- WL_units = 'nm'
- npts = 251
- factor = 2.1
- flow_total = 41
- # flow_total = 21
- # flow_total = 0
- crossplane = 'XZ'
- # crossplane='YZ'
- # crossplane='XY'
- # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
- field_to_plot = 'Pabs'
- # field_to_plot='angleEx'
- import matplotlib.pyplot as plt
- fig, axs = plt.subplots(1, 1) # , sharey=True, sharex=True)
- fig.tight_layout()
- fieldplot(fig, axs, x, m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor,
- flow_total, density=50.0, maxlength=40.0, arrowstyle='-',
- subplot_label=' ', draw_shell=True)
- # fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total, is_flow_extend=False)
- # for ax in axs:
- # ax.locator_params(axis='x',nbins=5)
- # ax.locator_params(axis='y',nbins=5)
- fig.subplots_adjust(hspace=0.3, wspace=-0.1)
- plt.savefig(comment + "-R" + str(int(round(x[-1] * WL / 2.0 / np.pi))) + "-" + crossplane + "-"
- + field_to_plot + ".pdf", pad_inches=0.02, bbox_inches='tight')
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
|