123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- //**********************************************************************************//
- // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> // Copyright
- // (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify // it
- // under the terms of the GNU General Public License as published by // the
- // Free Software Foundation, either version 3 of the License, or // (at your
- // option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, // but
- // WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU
- // General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products // using
- // it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, // vol. 180,
- // Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License // along
- // with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- // This program returns expansion coefficents of Mie series
- #include <complex>
- #include <cstdio>
- #include <string>
- #include "../src/nmie-applied-impl.hpp"
- #include "../src/nmie-precision.hpp"
- #include "./read-spectra.h"
- // template<class T> inline T pow2(const T value) {return value*value;}
- int main(int argc, char* argv[]) {
- using namespace nmie;
- try {
- read_spectra::ReadSpectra Si_index, Ag_index;
- read_spectra::ReadSpectra plot_core_index_, plot_TiN_;
- std::string core_filename("Si-int.txt");
- // std::string core_filename("Ag.txt");
- // std::string TiN_filename("TiN.txt");
- std::string TiN_filename("Ag-int.txt");
- // std::string TiN_filename("Si.txt");
- std::string shell_filename(core_filename);
- nmie::MultiLayerMieApplied<nmie::FloatType> multi_layer_mie;
- const std::complex<double> epsilon_Si(18.4631066585, 0.6259727805);
- const std::complex<double> epsilon_Ag(-8.5014154589, 0.7585845411);
- const std::complex<double> index_Si = std::sqrt(epsilon_Si);
- const std::complex<double> index_Ag = std::sqrt(epsilon_Ag);
- double WL = 500; // nm
- double core_width = 5.27; // nm Si
- double inner_width = 8.22; // nm Ag
- double outer_width = 67.91; // nm Si
- bool isSiAgSi = true;
- double delta_width = 25.0;
- // bool isSiAgSi = false;
- if (isSiAgSi) {
- core_width = 5.27; // nm Si
- inner_width = 8.22; // nm Ag
- outer_width = 67.91; // nm Si
- multi_layer_mie.AddTargetLayer(core_width, index_Si);
- multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
- multi_layer_mie.AddTargetLayer(outer_width + delta_width, index_Si);
- } else {
- inner_width = 31.93; // nm Ag
- outer_width = 4.06; // nm Si
- multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
- multi_layer_mie.AddTargetLayer(outer_width + delta_width, index_Si);
- }
- for (int dd = 0; dd < 50; ++dd) {
- delta_width = dd;
- FILE* fp;
- std::string fname =
- "absorb-layered-spectra-d" + std::to_string(dd) + ".dat";
- fp = fopen(fname.c_str(), "w");
- multi_layer_mie.SetWavelength(WL);
- multi_layer_mie.RunMieCalculation();
- double Qabs = static_cast<double>(multi_layer_mie.GetQabs());
- printf("Qabs = %g\n", Qabs);
- std::vector<std::vector<std::complex<nmie::FloatType> > > aln, bln, cln,
- dln;
- multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
- std::vector<std::vector<std::complex<double> > > d_aln =
- nmie::ConvertComplexVectorVector<double>(aln);
- std::string str = std::string("#WL ");
- for (int l = 0; l < d_aln.size(); ++l) {
- for (int n = 0; n < 3; ++n) {
- str += "|a|^2+|d|^2_ln" + std::to_string(l) + std::to_string(n) +
- " " + "|b|^2+|c|^2_ln" + std::to_string(l) +
- std::to_string(n) + " ";
- }
- }
- str += "\n";
- fprintf(fp, "%s", str.c_str());
- fprintf(fp, "# |a|+|d|");
- str.clear();
- double from_WL = 400;
- double to_WL = 600;
- int total_points = 401;
- double delta_WL = std::abs(to_WL - from_WL) / (total_points - 1.0);
- Si_index.ReadFromFile(core_filename)
- .ResizeToComplex(from_WL, to_WL, total_points)
- .ToIndex();
- Ag_index.ReadFromFile(TiN_filename)
- .ResizeToComplex(from_WL, to_WL, total_points)
- .ToIndex();
- auto Si_data = Si_index.GetIndex();
- auto Ag_data = Ag_index.GetIndex();
- for (int i = 0; i < Si_data.size(); ++i) {
- const double& WL = Si_data[i].first;
- const std::complex<double>& Si = Si_data[i].second;
- const std::complex<double>& Ag = Ag_data[i].second;
- str += std::to_string(WL);
- multi_layer_mie.ClearTarget();
- if (isSiAgSi) {
- multi_layer_mie.AddTargetLayer(core_width, Si);
- multi_layer_mie.AddTargetLayer(inner_width, Ag);
- multi_layer_mie.AddTargetLayer(outer_width + delta_width, Si);
- } else {
- inner_width = 31.93; // nm Ag
- outer_width = 4.06; // nm Si
- multi_layer_mie.AddTargetLayer(inner_width, Ag);
- multi_layer_mie.AddTargetLayer(outer_width + delta_width, Si);
- }
- multi_layer_mie.SetWavelength(WL);
- multi_layer_mie.RunMieCalculation();
- multi_layer_mie.GetQabs();
- multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
- for (int l = 0; l < aln.size(); ++l) {
- for (int n = 0; n < 3; ++n) {
- str += " " +
- std::to_string(static_cast<double>(
- pow2(std::abs(aln[l][n])) + pow2(std::abs(dln[l][n])))) +
- " " +
- std::to_string(static_cast<double>(
- pow2(std::abs(bln[l][n])) + pow2(std::abs(cln[l][n]))));
- // str+=" "+std::to_string(aln[l][n].real() -
- // pow2(std::abs(aln[l][n])) +dln[l][n].real() -
- // pow2(std::abs(dln[l][n])))
- // + " "
- // + std::to_string(bln[l][n].real() - pow2(std::abs(bln[l][n]))
- // +cln[l][n].real() - pow2(std::abs(cln[l][n]))
- // );
- }
- }
- str += "\n";
- fprintf(fp, "%s", str.c_str());
- str.clear();
- }
- fclose(fp);
- }
- // WL = 500;
- // multi_layer_mie.SetWavelength(WL);
- // multi_layer_mie.RunMieCalculation();
- // multi_layer_mie.GetQabs();
- // multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
- // printf("\n Scattering");
- // for (int l = 0; l<aln.size(); ++l) {
- // int n = 0;
- // printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(),
- // aln[l][n].imag()); printf("bln[%i][%i] = %g, %gi\n", l, n+1,
- // bln[l][n].real(), bln[l][n].imag()); printf("cln[%i][%i] = %g, %gi\n",
- // l, n+1, cln[l][n].real(), cln[l][n].imag()); printf("dln[%i][%i] = %g,
- // %gi\n", l, n+1, dln[l][n].real(), dln[l][n].imag()); n = 1;
- // printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(),
- // aln[l][n].imag()); printf("bln[%i][%i] = %g, %gi\n", l, n+1,
- // bln[l][n].real(), bln[l][n].imag()); printf("cln[%i][%i] = %g, %gi\n",
- // l, n+1, cln[l][n].real(), cln[l][n].imag()); printf("dln[%i][%i] = %g,
- // %gi\n", l, n+1, dln[l][n].real(), dln[l][n].imag());
- // // n = 2;
- // // printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(),
- // aln[l][n].imag());
- // // printf("bln[%i][%i] = %g, %gi\n", l, n+1, bln[l][n].real(),
- // bln[l][n].imag());
- // // printf("cln[%i][%i] = %g, %gi\n", l, n+1, cln[l][n].real(),
- // cln[l][n].imag());
- // // printf("dln[%i][%i] = %g, %gi\n", l, n+1, dln[l][n].real(),
- // dln[l][n].imag());
- // }
- // printf("\n Absorbtion\n");
- // for (int l = 0; l<aln.size(); ++l) {
- // if (l == aln.size()-1) printf(" Total ");
- // printf("===== l=%i =====\n", l);
- // int n = 0;
- // printf("aln[%i][%i] = %g\n", l, n+1, aln[l][n].real() -
- // pow2(std::abs(aln[l][n]))); printf("bln[%i][%i] = %g\n", l, n+1,
- // bln[l][n].real() - pow2(std::abs(bln[l][n]))); printf("cln[%i][%i] =
- // %g\n", l, n+1, cln[l][n].real() - pow2(std::abs(cln[l][n])));
- // printf("dln[%i][%i] = %g\n", l, n+1, dln[l][n].real() -
- // pow2(std::abs(dln[l][n]))); n = 1; printf("aln[%i][%i] = %g\n", l, n+1,
- // aln[l][n].real() - pow2(std::abs(aln[l][n]))); printf("bln[%i][%i] =
- // %g\n", l, n+1, bln[l][n].real() - pow2(std::abs(bln[l][n])));
- // printf("cln[%i][%i] = %g\n", l, n+1, cln[l][n].real() -
- // pow2(std::abs(cln[l][n]))); printf("dln[%i][%i] = %g\n", l, n+1,
- // dln[l][n].real() - pow2(std::abs(dln[l][n])));
- // // n = 2;
- // // printf("aln[%i][%i] = %g\n", l, n+1, aln[l][n].real() -
- // pow2(std::abs(aln[l][n])));
- // // printf("bln[%i][%i] = %g\n", l, n+1, bln[l][n].real() -
- // pow2(std::abs(bln[l][n])));
- // // printf("cln[%i][%i] = %g\n", l, n+1, cln[l][n].real() -
- // pow2(std::abs(cln[l][n])));
- // // printf("dln[%i][%i] = %g\n", l, n+1, dln[l][n].real() -
- // pow2(std::abs(dln[l][n])));
- // }
- } catch (const std::invalid_argument& ia) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- return -1;
- }
- return 0;
- }
|