12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2019-2021 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- import sys
- sys.path.insert(0,'..') # to be able to import scattnlay from the upper dir
- from scattnlay import scattnlay,scattcoeffs,fieldnlay
- import matplotlib.pyplot as plt
- import numpy as np
- import cmath
- from_WL = 400
- to_WL = 800
- WL_points= 100
- WLs = np.linspace(from_WL, to_WL, WL_points)
- index_NP = 1.5+0.3j
- x = np.ones((1), dtype = np.float64)
- m = np.ones((1), dtype = np.complex128)
- core_r = 45000
- Qsca_vec = []
- core_r_vec = []
- an_vec = []
- bn_vec = []
- for WL in WLs:
- x[0] = 2.0*np.pi*core_r/WL#/4.0*3.0
- m[0] = index_NP
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
- np.array(x), np.array(m),
- mp=True
- )
- print(np.array([Qsca]))
- terms, an, bn = scattcoeffs(x, m,24)
- # Qsca_vec.append(Qsca*np.pi*core_r**2*1e-5)
- Qsca_vec.append(Qsca)#*np.pi*core_r**2*1e-5)
- core_r_vec.append(core_r)
- an_vec.append(np.abs(an)[0])
- bn_vec.append(np.abs(bn)[0])
- an_vec = np.array(an_vec)
- bn_vec = np.array(bn_vec)
- # print(an_vec)
- fig, axs2 = plt.subplots(1,1)#, sharey=True, sharex=True)
- axs2.plot(WLs, Qsca_vec, color="black")
- # axs.set_xlabel("D, nm")
- # axs.set_ylabel("$Q_{sca}$")
- # axs2 = axs.twinx()
- # axs2.plot(np.array(core_r_vec)*2,an_vec[:,0],"b.",lw=0.8, markersize=1.9,label="$a_0$")
- # axs2.plot(np.array(core_r_vec)*2,bn_vec[:,0],"b-", markersize=1.9,label="$b_0$")
- # axs2.plot(np.array(core_r_vec)*2,an_vec[:,1],"g.",lw=0.8, markersize=1.9,label="$a_1$")
- # axs2.plot(np.array(core_r_vec)*2,bn_vec[:,1],"g-", markersize=1.9,label="$b_1$")
- # axs2.legend(loc="upper right")
- # axs2.tick_params('y', colors='black')
- # axs2.set_ylim(0,1)
- # axs2.set_ylabel("Mie",color="black")
- plt.savefig("spectra.pdf",pad_inches=0.02, bbox_inches='tight')
- plt.show()
- plt.clf()
- plt.close()
|