123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- //**********************************************************************************//
- // Copyright (C) 2009-2013 Ovidio Pena <ovidio@bytesfall.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- #include <algorithm>
- #include <complex>
- #include <functional>
- #include <iostream>
- #include <stdexcept>
- #include <string>
- #include <vector>
- #include <stdlib.h>
- #include <stdio.h>
- #include <time.h>
- #include <string.h>
- //sudo aptitude install libgoogle-perftools-dev
- #include <google/heap-profiler.h>
- #include "nmie.h"
- #include "nmie-old.h"
- timespec diff(timespec start, timespec end);
- const double PI=3.14159265358979323846;
- template<class T> inline T pow2(const T value) {return value*value;}
- template <class VectorType, int dimensions> inline
- std::vector<VectorType> CrossProduct(std::vector<VectorType>& a, std::vector<VectorType>& b) {
- if (a.size() != 3 || b.size() != 3) throw std::invalid_argument("Cross product only for 3D vectors!");
- std::vector<VectorType> r (3);
- r[0] = a[1]*b[2]-a[2]*b[1];
- r[1] = a[2]*b[0]-a[0]*b[2];
- r[2] = a[0]*b[1]-a[1]*b[0];
- return r;
- }
- //***********************************************************************************//
- // This is the main function of 'scattnlay', here we read the parameters as //
- // arguments passed to the program which should be executed with the following //
- // syntaxis: //
- // ./scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment] //
- // //
- // When all the parameters were correctly passed we setup the integer L (the //
- // number of layers) and the arrays x and m, containing the size parameters and //
- // refractive indexes of the layers, respectively and call the function nMie. //
- // If the calculation is successful the results are printed with the following //
- // format: //
- // //
- // * If no comment was passed: //
- // 'Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' //
- // //
- // * If a comment was passed: //
- // 'comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' //
- //***********************************************************************************//
- int main(int argc, char *argv[]) {
- try {
- std::vector<std::string> args;
- args.assign(argv, argv + argc);
- std::string error_msg(std::string("Insufficient parameters.\nUsage: ") + args[0]
- + " -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] "
- + "[-t ti tf nt] [-c comment]\n");
- enum mode_states {read_L, read_x, read_mr, read_mi, read_ti, read_tf, read_nt, read_comment};
- // for (auto arg : args) std::cout<< arg <<std::endl;
- std::string comment;
- int has_comment = 0;
- int i, l, L = 0;
- std::vector<double> x, Theta;
- std::vector<std::complex<double> > m, S1, S2;
- double Qext, Qabs, Qsca, Qbk, Qpr, g, Albedo;
- std::vector<std::complex<double> > mw, S1w, S2w;
- double Qextw, Qabsw, Qscaw, Qbkw, Qprw, gw, Albedow;
- double ti = 0.0, tf = 90.0;
- int nt = 0;
- if (argc < 5) throw std::invalid_argument(error_msg);
-
- //strcpy(comment, "");
- // for (i = 1; i < argc; i++) {
- int mode = -1;
- double tmp_mr;
- for (auto arg : args) {
- // For each arg in args list we detect the change of the current
- // read mode or read the arg. The reading args algorithm works
- // as a finite-state machine.
- // Detecting new read mode (if it is a valid -key)
- if (arg == "-l") {
- mode = read_L;
- continue;
- }
- if (arg == "-t") {
- if ((mode != read_x) && (mode != read_comment))
- throw std::invalid_argument(std::string("Unfinished layer!\n")
- +error_msg);
- mode = read_ti;
- continue;
- }
- if (arg == "-c") {
- if ((mode != read_x) && (mode != read_nt))
- throw std::invalid_argument(std::string("Unfinished layer or theta!\n") + error_msg);
- mode = read_comment;
- continue;
- }
- // Reading data. For invalid date the exception will be thrown
- // with the std:: and catched in the end.
- if (mode == read_L) {
- L = std::stoi(arg);
- mode = read_x;
- continue;
- }
- if (mode == read_x) {
- x.push_back(std::stod(arg));
- mode = read_mr;
- continue;
- }
- if (mode == read_mr) {
- tmp_mr = std::stod(arg);
- mode = read_mi;
- continue;
- }
- if (mode == read_mi) {
- m.push_back(std::complex<double>( tmp_mr,std::stod(arg) ));
- mode = read_x;
- continue;
- }
- if (mode == read_ti) {
- ti = std::stod(arg);
- mode = read_tf;
- continue;
- }
- if (mode == read_tf) {
- tf = std::stod(arg);
- mode = read_nt;
- continue;
- }
- if (mode == read_nt) {
- nt = std::stoi(arg);
- Theta.resize(nt);
- S1.resize(nt);
- S2.resize(nt);
- S1w.resize(nt);
- S2w.resize(nt);
- continue;
- }
- if (mode == read_comment) {
- comment = arg;
- has_comment = 1;
- continue;
- }
- }
- if ( (x.size() != m.size()) || (L != x.size()) )
- throw std::invalid_argument(std::string("Broken structure!\n")
- +error_msg);
- if ( (0 == m.size()) || ( 0 == x.size()) )
- throw std::invalid_argument(std::string("Empty structure!\n")
- +error_msg);
-
- if (nt < 0) {
- printf("Error reading Theta.\n");
- return -1;
- } else if (nt == 1) {
- Theta[0] = ti*PI/180.0;
- } else {
- for (i = 0; i < nt; i++) {
- Theta[i] = (ti + (double)i*(tf - ti)/(nt - 1))*PI/180.0;
- }
- }
- // timespec time1, time2;
- // long cpptime_nsec, best_cpp;
- // long ctime_nsec, best_c;
- // long cpptime_sec, ctime_sec;
- // long repeats = 150;
- // //HeapProfilerStart("heapprof");
- // do {
- // clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
- // for (int i = 0; i<repeats; ++i) {
- // nmie::nMie(L, x, m, nt, Theta, &Qextw, &Qscaw,
- // &Qabsw, &Qbkw, &Qprw, &gw, &Albedow, S1w, S2w);
- // }
- // clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
- // cpptime_nsec = diff(time1,time2).tv_nsec;
- // cpptime_sec = diff(time1,time2).tv_sec;
- // clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
- // // for (int i = 0; i<repeats; ++i) {
- // // nMie(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2);
- // // }
- // clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
- // ctime_nsec = diff(time1,time2).tv_nsec;
- // ctime_sec = diff(time1,time2).tv_sec;
- // long double ratio = static_cast<long double>(ctime_nsec)
- // /static_cast<long double>(cpptime_nsec);
- // printf("-- C++ time consumed %lg sec\n", (cpptime_nsec/1e9));
- // if ( ratio > 0.01 ) {
- // if ( ctime_sec == 0 && cpptime_sec == 0) {
- // printf("-- C time consumed %lg sec\n", (ctime_nsec/1e9));
- // printf("-- total repeats: %ld\n", repeats);
- // printf("-- C/C++ time ratio: %Lg\n", ratio);
- // } else {
- // printf("==Test is too long!\n");
- // }
- // }
- // repeats *= 10;
- // } while (cpptime_nsec < 1e8 && ctime_nsec < 1e8);
- nMie(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2);
- nmie::nMie(L, x, m, nt, Theta, &Qextw, &Qscaw, &Qabsw, &Qbkw, &Qprw, &gw, &Albedow, S1w, S2w);
- printf("\n");
-
- if (has_comment) {
- printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e old\n", comment.c_str(), Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo);
- printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n", comment.c_str(), Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow);
- } else {
- printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e old\n", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo);
- printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n", Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow);
- }
-
- if (nt > 0) {
- printf(" Theta, S1.r, S1.i, S2.r, S2.i\n");
-
- for (i = 0; i < nt; i++) {
- printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e old\n", Theta[i]*180.0/PI, S1[i].real(), S1[i].imag(), S2[i].real(), S2[i].imag());
- printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e \n", Theta[i]*180.0/PI, S1w[i].real(), S1w[i].imag(), S2w[i].real(), S2w[i].imag());
- }
- }
- // Field testing
- //double size=2.0*PI*1.0/6.0;
- double WL=354; //nm
- double core_r = WL/20.0;
- double r_x = 2.0*PI*core_r/WL;
- double size=r_x;
- double R = size/(2.0*PI);
- double from_coord = -3.0*size, to_coord = 3.0*size;
- std::vector<double> range;
- int samples = 1251;
- for (int i = 0; i < samples; ++i) {
- range.push_back( from_coord + (to_coord-from_coord)/(static_cast<double>(samples)-1)*i );
- //range.push_back(size*0.01);
- //range.push_back(size*0.99999);
- //range.push_back(R/2.0);
- //range.push_back(size*1.00001);
- //range.push_back(3);
- //printf("r=%g ", range.back());
- }
- // range.push_back(size*0.99999999);
- // range.push_back(R/2.0);
- // range.push_back(size*1.00000001);
- //printf("r/2 = %g\n", R/2.0);
- //int samples = range.size();
- std::vector<double> zero(samples, 0.0);
- std::vector<double> Xp, Yp, Zp;
- // // X line
- // Xp.insert(Xp.end(), range.begin(), range.end());
- // Yp.insert(Yp.end(), zero.begin(), zero.end());
- // Zp.insert(Zp.end(), zero.begin(), zero.end());
- // //Y line
- // Xp.insert(Xp.end(), zero.begin(), zero.end());
- // Yp.insert(Yp.end(), range.begin(), range.end());
- // Zp.insert(Zp.end(), zero.begin(), zero.end());
- // Z line
- Xp.insert(Xp.end(), zero.begin(), zero.end());
- Yp.insert(Yp.end(), zero.begin(), zero.end());
- Zp.insert(Zp.end(), range.begin(), range.end());
- int ncoord = Xp.size();
- // Test solid sphere
- x = {size};
- std::complex<double> epsilon_Ag(-2.0, 0.28);
- m = {std::sqrt(epsilon_Ag)};
- //m = {std::complex<double>(2.000000,0.00)};
- //m = {std::complex<double>(1.414213562, 0.00)};
- L = x.size();
- int pl = 0;
- int nmax = 0;
- std::vector<std::vector<std::complex<double> > > E(ncoord), H(ncoord);
- for (auto& f:E) f.resize(3);
- for (auto& f:H) f.resize(3);
- double free_impedance = 376.73031;
- //double free_impedance = 1.0;
- nmie::nField( L, pl, x, m, nmax, ncoord, Xp, Yp, Zp, E, H);
- double sum_e = 0.0, sum_h = 0.0;
- printf ("Field total sum ()\n");
- double min_E, max_E;
- for (auto c:E[0]) {
- sum_e+=std::abs(pow2(c));
- }
- min_E = sum_e;
- max_E = sum_e;
- for (auto f:E) {
- sum_e = 0.0;
- for (auto c:f) {
- sum_e+=std::abs(pow2(c));
- //printf("component: %g + %g i\n", std::real(c), std::imag(c));
- }
- if (sum_e > max_E) max_E = sum_e;
- if (sum_e < min_E) min_E = sum_e;
-
- //printf("Field E=%g\n", std::sqrt(std::abs(sum_e)));
- }
- printf("Min E = %g; max E =%g", min_E, max_E);
- // for (auto f:H) {
- // sum_h = 0.0;
- // for (auto c:f) sum_h+=std::abs(pow2(c));
- // printf("Field H=%g\n", std::sqrt(std::abs(sum_h))*free_impedance);
- // }
- } catch( const std::invalid_argument& ia ) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- return -1;
- }
- return 0;
- }
- timespec diff(timespec start, timespec end)
- {
- timespec temp;
- if ((end.tv_nsec-start.tv_nsec)<0) {
- temp.tv_sec = end.tv_sec-start.tv_sec-1;
- temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;
- } else {
- temp.tv_sec = end.tv_sec-start.tv_sec;
- temp.tv_nsec = end.tv_nsec-start.tv_nsec;
- }
- return temp;
- }
|