123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
- # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
- # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- import cmath
- epsilon_Si = 13.64 + 0.047j
- epsilon_Ag = -28.05 + 1.525j
- # epsilon_Si = 2.0 + 0.047j
- # epsilon_Ag = -2.0 + 1.525j
- # air = 1
- # epsilon_Si = air*2
- # epsilon_Ag = air*2
- index_Si = np.sqrt(epsilon_Si)
- index_Ag = np.sqrt(epsilon_Ag)
- # # Values for 800 nm, taken from http://refractiveindex.info/
- # index_Si = 3.69410 + 0.0065435j
- # index_Ag = 0.18599 + 4.9886j
- WL=800 #nm
- core_width = 17.74 #nm Si
- inner_width = 23.31 #nm Ag
- outer_width = 22.95 #nm Si
- core_r = core_width
- inner_r = core_r+inner_width
- outer_r = inner_r+outer_width
- # n1 = 1.53413
- # n2 = 0.565838 + 7.23262j
- nm = 1.0
- x = np.ones((1, 3), dtype = np.float64)
- x[0, 0] = 2.0*np.pi*core_r/WL
- x[0, 1] = 2.0*np.pi*inner_r/WL
- x[0, 2] = 2.0*np.pi*outer_r/WL
- m = np.ones((1, 3), dtype = np.complex128)
- m[0, 0] = index_Si/nm
- m[0, 1] = index_Ag/nm
- m[0, 2] = index_Si/nm
- print "x =", x
- print "m =", m
- npts = 281
- factor=2.5
- scan = np.linspace(-factor*x[0, 2], factor*x[0, 2], npts)
- coordX, coordZ = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordZ.resize(npts*npts)
- coordY = np.zeros(npts*npts, dtype = np.float64)
- coord = np.vstack((coordX, coordY, coordZ)).transpose()
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
- terms, E, H = fieldnlay(x, m, coord)
- print("Qabs = "+str(Qabs));
- Er = np.absolute(E)
- Hr = np.absolute(H)
- # |E|/|Eo|
- Eabs = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
- Eangle = np.angle(E[0, :, 0])/np.pi*180
- Habs= np.sqrt(Hr[0, :, 0]**2 + Hr[0, :, 1]**2 + Hr[0, :, 2]**2)
- Hangle = np.angle(H[0, :, 1])/np.pi*180
- result = np.vstack((coordX, coordY, coordZ, Eabs)).transpose()
- result2 = np.vstack((coordX, coordY, coordZ, Eangle)).transpose()
- try:
- import matplotlib.pyplot as plt
- from matplotlib import cm
- from matplotlib.colors import LogNorm
- # min_tick = 0.0
- # max_tick = 1.0
- Eabs_data = np.resize(Eabs, (npts, npts)).T
- Eangle_data = np.resize(Eangle, (npts, npts)).T
- Habs_data = np.resize(Habs, (npts, npts)).T
- Hangle_data = np.resize(Hangle, (npts, npts)).T
- fig, axs = plt.subplots(2,2)#, sharey=True, sharex=True)
- fig.tight_layout()
- # Rescale to better show the axes
- scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
- scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
- # Define scale ticks
- # min_tick = min(min_tick, np.amin(Eabs_data))
- # max_tick = max(max_tick, np.amax(Eabs_data))
- # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
- # scale_ticks = np.linspace(min_tick, max_tick, 10)
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
- axs[0,0].set_title('Eabs')
- cax = axs[0,0].imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
- origin = 'lower'
- #, vmin = min_tick, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- axs[0,0].axis("image")
- axs[0,1].set_title('Eangle')
- cax = axs[0,1].imshow(Eangle_data, interpolation = 'nearest', cmap = cm.jet,
- origin = 'lower'
- #, vmin = min_tick, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- axs[1,0].set_title('Habs')
- cax = axs[1,0].imshow(Habs_data, interpolation = 'nearest', cmap = cm.jet,
- origin = 'lower'
- #, vmin = min_tick, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- axs[1,1].set_title('Hangle')
- cax = axs[1,1].imshow(Hangle_data, interpolation = 'nearest', cmap = cm.jet,
- origin = 'lower'
- #, vmin = min_tick, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- # Add colorbar
- # cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
- # cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
- # pos = list(cbar.ax.get_position().bounds)
- # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
- # plt.xlabel('Z, nm')
- # plt.ylabel('X, nm')
- # This part draws the nanoshell
- from matplotlib import patches
- for m in (0,1):
- for n in (0,1):
- s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
- theta1=0.0, theta2=360.0, linewidth=1, color='black')
- s2 = patches.Arc((0, 0), 2.0*inner_r, 2.0*inner_r, angle=0.0, zorder=2,
- theta1=0.0, theta2=360.0, linewidth=1, color='black')
- s3 = patches.Arc((0, 0), 2.0*outer_r, 2.0*outer_r, angle=0.0, zorder=2,
- theta1=0.0, theta2=360.0, linewidth=1, color='black')
- axs[m,n].add_patch(s1)
- axs[m,n].add_patch(s2)
- axs[m,n].add_patch(s3)
- # axs[0,0].add_patch(s1)
- # axs[0,0].add_patch(s2)
- # axs[0,0].add_patch(s3)
- # axs[1,0].add_patch(s1)
- # axs[1,0].add_patch(s2)
- # axs[1,0].add_patch(s3)
- # axs[0,1].add_patch(s1)
- # axs[0,1].add_patch(s2)
- # axs[0,1].add_patch(s3)
- # axs[1,1].add_patch(s1)
- # axs[1,1].add_patch(s2)
- # axs[1,1].add_patch(s3)
-
- # for m in (0,1):
- # for n in (0,1):
- # print(m)
- # print(n)
- # axs[m,n].add_patch(s1)
- # axs[m,n].add_patch(s2)
- # axs[m,n].add_patch(s3)
- # End of drawing
- plt.savefig("SiAgSi.png")
- plt.draw()
- plt.show()
- plt.clf()
- plt.close()
- finally:
- np.savetxt("field.txt", result, fmt = "%.5f")
- print result
|