123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
- # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
- # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
- import os, cmath
- import numpy as np
- from scattnlay import fieldnlay
- from fieldplot import fieldplot
- if __name__ == '__main__':
- import argparse
- parser = argparse.ArgumentParser()
- parser.add_argument("dirnames", nargs='*', default='.', help="read all data from DIR(S)")
- parser.add_argument("-f", "--filename", dest="fname", nargs='?', default=None,
- help="name of 'n' file")
- parser.add_argument("-w", "--wavelength", dest="wl", default=3.75, type=float,
- help="wavelength of electromagnetic wave")
- parser.add_argument("-r", "--radius", dest="rad", default=None, type=float,
- help="radius of PEC sphere")
- parser.add_argument("-t", "--thickness", dest="tc", default=0.8, type=float,
- help="thickness of cloaking layer")
- parser.add_argument("-n", "--npoints", dest="npts", default=101, type=int,
- help="number of points for the grid")
- args = parser.parse_args()
- for dirname in args.dirnames:
- print "Calculating spectra for data file(s) in dir '%s'..." % (dirname)
- wl = args.wl # cm
- if (args.rad is None):
- Rs = 0.75*wl # cm
- else:
- Rs = args.rad # cm
- tc = args.tc # cm
- if (args.fname is None):
- files = [x for x in os.listdir('%s/' % (dirname)) if x.endswith('.dat')]
- files.sort()
- else:
- files = [args.fname]
- npts = args.npts # cm
- if not os.path.exists('%s/flow-results/' % (dirname)):
- os.makedirs('%s/flow-results/' % (dirname))
- Rt = Rs + tc # cm
- print "Wl = %.2f, Rs = %.2f, tc = %.2f, Rt = %.2f" % (wl, Rs, tc, Rt)
- ms = 1.0 + 40.0j
- for i, fname in enumerate(files):
- print "Calculating spectra for file '%s'..." % (fname)
- basename = os.path.splitext(fname)[0]
- nvalues = np.loadtxt('%s/%s' % (dirname, fname))*1.0 + 1e-11j
- tl = tc/len(nvalues) # cm
- r = [Rs]
- for i in range(len(nvalues)):
- r += [r[i] + tl]
- x = np.ones((len(nvalues) + 1), dtype = np.float64)
- m = np.ones((len(nvalues) + 1), dtype = np.complex128)
- x = 2.0*np.pi*np.array(r, dtype = np.float64)/wl
- m = np.array([ms] + nvalues[:, 1].tolist(), dtype = np.complex128)
- print(x,m)
- factor = 2.91*x[0]/x[-1]
- print factor
- comment='PEC-'+basename
- WL_units=''
- #flow_total = 39
- # flow_total = 23 #SV False
- flow_total = 24
- #flow_total = 4
- #crossplane='XZ'
- crossplane='XYZ'
- #crossplane='YZ'
- #crossplane='XY'
- # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
- #field_to_plot='Pabs'
- #field_to_plot='Eabs'
-
- field_to_plot='angleEx'
- #field_to_plot='angleHy'
- print "x =", x
- print "m =", m
- import matplotlib.pyplot as plt
- plt.rcParams.update({'font.size': 16})
- fig, axs = plt.subplots(1,1)#, sharey=True, sharex=True)
- fig.tight_layout()
- fieldplot(fig, axs, x,m, wl, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total,
- subplot_label=' ',is_flow_extend=False
- , outline_width=1.5
- , pl=0 #PEC layer starts the design
- )
- # fieldplot(fig, axs, x[0],m[0], wl, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total,
- # subplot_label=' ' ,is_flow_extend=False
- # , outline_width=1.5
- # , pl=0 #PEC layer starts the design
- # )
- fig.subplots_adjust(hspace=0.3, wspace=-0.1)
- plt.savefig(comment+"-R"+str(int(round(x[-1]*wl/2.0/np.pi)))+"-"+crossplane+"-"
- +field_to_plot+".pdf",pad_inches=0.02, bbox_inches='tight')
- plt.draw()
- plt.clf()
- plt.close()
- print "Done!!"
|