lfield-Ag-flow.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of python-scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite the following reference:
  21. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. #
  25. # You should have received a copy of the GNU General Public License
  26. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. # This test case calculates the electric field in the
  28. # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
  29. # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
  30. # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
  31. import scattnlay
  32. from scattnlay import fieldnlay
  33. from scattnlay import scattnlay
  34. import numpy as np
  35. import cmath
  36. def get_index(array,value):
  37. idx = (np.abs(array-value)).argmin()
  38. return idx
  39. #Ec = np.resize(Ec, (npts, npts)).T
  40. def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
  41. # Initial position
  42. flow_x = [a]
  43. flow_z = [b]
  44. x_pos = flow_x[-1]
  45. z_pos = flow_z[-1]
  46. x_idx = get_index(scale_x, x_pos)
  47. z_idx = get_index(scale_z, z_pos)
  48. S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
  49. #if (np.linalg.norm(S)> 1e-4):
  50. Snorm_prev=S/np.linalg.norm(S)
  51. for n in range(0, nmax):
  52. #Get the next position
  53. #1. Find Poynting vector and normalize it
  54. x_pos = flow_x[-1]
  55. z_pos = flow_z[-1]
  56. x_idx = get_index(scale_x, x_pos)
  57. z_idx = get_index(scale_z, z_pos)
  58. #print x_idx, z_idx
  59. S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
  60. #if (np.linalg.norm(S)> 1e-4):
  61. Snorm=S/np.linalg.norm(S)
  62. #2. Evaluate displacement = half of the discrete and new position
  63. dpos = abs(scale_z[0]-scale_z[1])/2.0
  64. dx = dpos*Snorm[0]
  65. dz = dpos*Snorm[2]
  66. x_pos = x_pos+dx
  67. z_pos = z_pos+dz
  68. #3. Save result
  69. flow_x.append(x_pos)
  70. flow_z.append(z_pos)
  71. return flow_x, flow_z
  72. # # a)
  73. #WL=400 #nm
  74. #core_r = WL/20.0
  75. #epsilon_Ag = -2.0 + 10.0j
  76. # # b)
  77. #WL=400 #nm
  78. #core_r = WL/20.0
  79. #epsilon_Ag = -2.0 + 1.0j
  80. # c)
  81. WL=354 #nm
  82. core_r = WL/20.0
  83. epsilon_Ag = -2.0 + 0.28j
  84. # # d)
  85. # WL=367 #nm
  86. # core_r = WL/20.0
  87. # epsilon_Ag = -2.71 + 0.25j
  88. index_Ag = np.sqrt(epsilon_Ag)
  89. print(index_Ag)
  90. # n1 = 1.53413
  91. # n2 = 0.565838 + 7.23262j
  92. nm = 1.0
  93. x = np.ones((1, 1), dtype = np.float64)
  94. x[0, 0] = 2.0*np.pi*core_r/WL
  95. m = np.ones((1, 1), dtype = np.complex128)
  96. m[0, 0] = index_Ag/nm
  97. print "x =", x
  98. print "m =", m
  99. npts = 281
  100. factor=2
  101. scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
  102. coord = np.zeros((npts, 3), dtype = np.float64)
  103. coord[:, 2] = scan
  104. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
  105. terms, E, H = fieldnlay(x, m, coord)
  106. #P = np.array(map(lambda n: np.cross(E[0][n], H[0][n])[2].real, range(0, len(E[0]))))
  107. P = np.array(map(lambda n: abs(np.cross(E[0][n], H[0][n])[2]), range(0, len(E[0]))))
  108. Ec = E[0, :, :]
  109. Hc = H[0, :, :]
  110. result = np.vstack((scan, P)).transpose()
  111. try:
  112. import matplotlib.pyplot as plt
  113. fig = plt.figure()
  114. ax = fig.add_subplot(111)
  115. ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis')
  116. ax.legend()
  117. plt.xlabel('X')
  118. # plt.ylabel('|P|/|Eo|')
  119. plt.savefig("Ag-abs(Px)-nmie.png")
  120. plt.draw()
  121. plt.show()
  122. finally:
  123. np.savetxt("lfield.txt", result, fmt = "%.5f")
  124. print result
  125. # try:
  126. # import matplotlib.pyplot as plt
  127. # from matplotlib import cm
  128. # from matplotlib.colors import LogNorm
  129. # # min_tick = 0.0
  130. # # max_tick = 1.0
  131. # Eabs_data = np.resize(P, (npts, npts)).T
  132. # #Eabs_data = np.resize(Eabs, (npts, npts)).T
  133. # #Eabs_data = np.resize(Eangle, (npts, npts)).T
  134. # #Eabs_data = np.resize(Habs, (npts, npts)).T
  135. # #Eabs_data = np.resize(Hangle, (npts, npts)).T
  136. # fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
  137. # #fig.tight_layout()
  138. # # Rescale to better show the axes
  139. # scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
  140. # scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
  141. # # Define scale ticks
  142. # min_tick = np.amin(Eabs_data)
  143. # max_tick = np.amax(Eabs_data)
  144. # # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
  145. # scale_ticks = np.linspace(min_tick, max_tick, 11)
  146. # # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
  147. # #ax.set_title('Eabs')
  148. # cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
  149. # origin = 'lower'
  150. # #, vmin = min_tick, vmax = max_tick
  151. # , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
  152. # #,norm = LogNorm()
  153. # )
  154. # ax.axis("image")
  155. # # # Add colorbar
  156. # cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
  157. # cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
  158. # # pos = list(cbar.ax.get_position().bounds)
  159. # # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
  160. # plt.xlabel('Z, nm')
  161. # plt.ylabel('X, nm')
  162. # # This part draws the nanoshell
  163. # from matplotlib import patches
  164. # s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
  165. # theta1=0.0, theta2=360.0, linewidth=1, color='black')
  166. # ax.add_patch(s1)
  167. # from matplotlib.path import Path
  168. # #import matplotlib.patches as patches
  169. # flow_total = 41
  170. # for flow in range(0,flow_total):
  171. # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
  172. # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
  173. # min(scale_z),
  174. # npts*6)
  175. # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
  176. # #codes = [Path.CURVE4]*len(verts)
  177. # codes = [Path.LINETO]*len(verts)
  178. # codes[0] = Path.MOVETO
  179. # path = Path(verts, codes)
  180. # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
  181. # ax.add_patch(patch)
  182. # # # Start powerflow lines in the middle of the image
  183. # # flow_total = 131
  184. # # for flow in range(0,flow_total):
  185. # # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
  186. # # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
  187. # # 15.0, #min(scale_z),
  188. # # npts*6)
  189. # # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
  190. # # #codes = [Path.CURVE4]*len(verts)
  191. # # codes = [Path.LINETO]*len(verts)
  192. # # codes[0] = Path.MOVETO
  193. # # path = Path(verts, codes)
  194. # # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
  195. # # ax.add_patch(patch)
  196. # plt.savefig("Ag-flow.png")
  197. # plt.draw()
  198. # plt.show()
  199. # plt.clf()
  200. # plt.close()
  201. # finally:
  202. # print("Qabs = "+str(Qabs));
  203. # #