12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595 |
- #include "nmie-core.h"
- #include <array>
- #include <algorithm>
- #include <cstdio>
- #include <cstdlib>
- #include <stdexcept>
- #include <vector>
- namespace nmie {
-
- template<class T> inline T pow2(const T value) {return value*value;}
- int round(double x) {
- return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
- }
- int nMie(int L, std::vector<double>& x, std::vector<std::complex<double> >& m, int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
-
- if (x.size() != L || m.size() != L)
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
- if (Theta.size() != nTheta)
- throw std::invalid_argument("Declared number of sample for Theta is not correct!");
- try {
- MultiLayerMie multi_layer_mie;
- multi_layer_mie.SetLayersWidth(x);
- multi_layer_mie.SetLayersIndex(m);
- multi_layer_mie.SetAngles(Theta);
-
- multi_layer_mie.RunMieCalculations();
-
- *Qext = multi_layer_mie.GetQext();
- *Qsca = multi_layer_mie.GetQsca();
- *Qabs = multi_layer_mie.GetQabs();
- *Qbk = multi_layer_mie.GetQbk();
- *Qpr = multi_layer_mie.GetQpr();
- *g = multi_layer_mie.GetAsymmetryFactor();
- *Albedo = multi_layer_mie.GetAlbedo();
- S1 = multi_layer_mie.GetS1();
- S2 = multi_layer_mie.GetS2();
- } catch(const std::invalid_argument& ia) {
-
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- throw std::invalid_argument(ia);
- return -1;
- }
- return 0;
- }
- int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
- if (x.size() != L || m.size() != L)
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
- if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
- || E.size() != ncoord || H.size() != ncoord)
- throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
- for (auto f:E)
- if (f.size() != 3)
- throw std::invalid_argument("Field E is not 3D!");
- for (auto f:H)
- if (f.size() != 3)
- throw std::invalid_argument("Field H is not 3D!");
- try {
- MultiLayerMie multi_layer_mie;
-
- multi_layer_mie.SetLayersWidth(x);
- multi_layer_mie.SetLayersIndex(m);
- multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
- multi_layer_mie.RunFieldCalculations();
- E = multi_layer_mie.GetFieldE();
- H = multi_layer_mie.GetFieldH();
-
- } catch(const std::invalid_argument& ia) {
-
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- throw std::invalid_argument(ia);
- return - 1;
- }
- return 0;
- }
-
-
-
- double MultiLayerMie::GetQext() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qext_;
- }
-
-
-
- double MultiLayerMie::GetQabs() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qabs_;
- }
-
-
-
- double MultiLayerMie::GetQsca() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qsca_;
- }
-
-
-
- double MultiLayerMie::GetQbk() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qbk_;
- }
-
-
-
- double MultiLayerMie::GetQpr() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qpr_;
- }
-
-
-
- double MultiLayerMie::GetAsymmetryFactor() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return asymmetry_factor_;
- }
-
-
-
- double MultiLayerMie::GetAlbedo() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return albedo_;
- }
-
-
-
- std::vector<std::complex<double> > MultiLayerMie::GetS1() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S1_;
- }
-
-
-
- std::vector<std::complex<double> > MultiLayerMie::GetS2() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S2_;
- }
-
-
-
- void MultiLayerMie::AddTargetLayer(double width, std::complex<double> layer_index) {
- isMieCalculated_ = false;
- if (width <= 0)
- throw std::invalid_argument("Layer width should be positive!");
- target_width_.push_back(width);
- target_index_.push_back(layer_index);
- }
-
-
-
- void MultiLayerMie::SetTargetPEC(double radius) {
- isMieCalculated_ = false;
- if (target_width_.size() != 0 || target_index_.size() != 0)
- throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
-
- AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
-
- SetPEC(0.0);
- }
-
-
-
- void MultiLayerMie::SetCoatingIndex(std::vector<std::complex<double> > index) {
- isMieCalculated_ = false;
- index_.clear();
- for (auto value : index) index_.push_back(value);
- }
-
-
-
- void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
- isMieCalculated_ = false;
- theta_ = angles;
-
-
- }
-
-
-
- void MultiLayerMie::SetCoatingWidth(std::vector<double> width) {
- isMieCalculated_ = false;
- width_.clear();
- for (auto w : width)
- if (w <= 0)
- throw std::invalid_argument("Coating width should be positive!");
- else width_.push_back(w);
- }
-
-
-
-
- void MultiLayerMie::SetLayersWidth(const std::vector<double>& size_parameter) {
- isMieCalculated_ = false;
- size_parameter_.clear();
- double prev_size_parameter = 0.0;
- for (auto layer_size_parameter : size_parameter) {
- if (layer_size_parameter <= 0.0)
- throw std::invalid_argument("Size parameter should be positive!");
- if (prev_size_parameter > layer_size_parameter)
- throw std::invalid_argument
- ("Size parameter for next layer should be larger than the previous one!");
- prev_size_parameter = layer_size_parameter;
- size_parameter_.push_back(layer_size_parameter);
- }
- }
-
-
-
-
- void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
- isMieCalculated_ = false;
-
- index_ = index;
-
- }
-
-
-
- void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords_sp) {
- if (coords_sp.size() != 3)
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
- if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size())
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
- coords_sp_ = coords_sp;
-
-
-
- }
-
-
-
- void MultiLayerMie::SetPEC(int layer_position) {
- isMieCalculated_ = false;
- if (layer_position < 0)
- throw std::invalid_argument("Error! Layers are numbered from 0!");
- PEC_layer_position_ = layer_position;
- }
-
-
-
- void MultiLayerMie::SetMaxTerms(int nmax) {
- isMieCalculated_ = false;
- nmax_preset_ = nmax;
-
- printf("Setting max terms: %d\n", nmax_preset_);
- }
-
-
-
- void MultiLayerMie::GenerateIndex() {
- isMieCalculated_ = false;
- index_.clear();
- for (auto index : target_index_) index_.push_back(index);
- for (auto index : index_) index_.push_back(index);
- }
-
-
-
- double MultiLayerMie::GetTotalRadius() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- if (total_radius_ == 0) GenerateSizeParameter();
- return total_radius_;
- }
-
-
-
- void MultiLayerMie::ClearLayers() {
- isMieCalculated_ = false;
- width_.clear();
- index_.clear();
- }
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::Nstop() {
- const double& xL = size_parameter_.back();
- if (xL <= 8) {
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
- } else if (xL <= 4200) {
- nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
- } else {
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
- }
- }
-
-
-
- void MultiLayerMie::Nmax(int first_layer) {
- int ri, riM1;
- const std::vector<double>& x = size_parameter_;
- const std::vector<std::complex<double> >& m = index_;
- Nstop();
- for (int i = first_layer; i < x.size(); i++) {
- if (i > PEC_layer_position_)
- ri = round(std::abs(x[i]*m[i]));
- else
- ri = 0;
- nmax_ = std::max(nmax_, ri);
-
- if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
- riM1 = round(std::abs(x[i - 1]* m[i]));
- else
- riM1 = 0;
- nmax_ = std::max(nmax_, riM1);
- }
- nmax_ += 15;
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::sbesjh(std::complex<double> z,
- std::vector<std::complex<double> >& jn,
- std::vector<std::complex<double> >& jnp,
- std::vector<std::complex<double> >& h1n,
- std::vector<std::complex<double> >& h1np) {
- const int limit = 20000;
- const double accur = 1.0e-12;
- const double tm30 = 1e-30;
- double absc;
- std::complex<double> zi, w;
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
- if ((absc < accur) || (std::imag(z) < -3.0)) {
- throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
- }
- zi = 1.0/z;
- w = zi + zi;
- pl = double(nmax_)*zi;
- f = pl + zi;
- b = f + f + zi;
- d = 0.0;
- c = f;
- for (int n = 0; n < limit; n++) {
- d = b - d;
- c = b - 1.0/c;
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
- if (absc < tm30) {
- d = tm30;
- }
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
- if (absc < tm30) {
- c = tm30;
- }
- d = 1.0/d;
- del = d*c;
- f = f*del;
- b += w;
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
- if (absc < accur) {
-
- break;
- }
- }
- if (absc > accur) {
- throw std::invalid_argument("We were not able to obtain the desired accuracy");
- }
- jn[nmax_ - 1] = tm30;
- jnp[nmax_ - 1] = f*jn[nmax_ - 1];
-
- for (int n = nmax_ - 2; n >= 0; n--) {
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
- jnp[n] = pl*jn[n] - jn[n + 1];
- pl = pl - zi;
- }
-
- jn0 = zi*std::sin(z);
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
-
-
- w = 1.0/jn[0];
- pl = zi;
- for (int n = 0; n < nmax_; n++) {
- jn[n] = jn0*(w*jn[n]);
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
- if (n != 0) {
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
-
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
- jndb = z;
- h1nldb = h1n[n];
- h1nbdb = h1n[n - 1];
- }
- pl += zi;
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
- }
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::sphericalBessel(std::complex<double> z,
- std::vector<std::complex<double> >& bj,
- std::vector<std::complex<double> >& by,
- std::vector<std::complex<double> >& bd) {
- std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
- sbesjh(z, jn, jnp, h1n, h1np);
- for (int n = 0; n < nmax_; n++) {
- bj[n] = jn[n];
- by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
- bd[n] = jnp[n]/jn[n] + 1.0/z;
- }
- }
-
-
-
- std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
-
-
-
- std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
-
-
-
- std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
- }
-
-
-
-
- std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::calcPsiZeta(std::complex<double> z,
- std::vector<std::complex<double> > D1,
- std::vector<std::complex<double> > D3,
- std::vector<std::complex<double> >& Psi,
- std::vector<std::complex<double> >& Zeta) {
-
- std::complex<double> c_i(0.0, 1.0);
- Psi[0] = std::sin(z);
- Zeta[0] = std::sin(z) - c_i*std::cos(z);
- for (int n = 1; n <= nmax_; n++) {
- Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
- Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::calcD1D3(const std::complex<double> z,
- std::vector<std::complex<double> >& D1,
- std::vector<std::complex<double> >& D3) {
-
- D1[nmax_] = std::complex<double>(0.0, 0.0);
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
- for (int n = nmax_; n > 0; n--) {
- D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
- }
- if (std::abs(D1[0]) > 100000.0)
- throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
-
- PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
- *std::exp(-2.0*z.imag()));
- D3[0] = std::complex<double>(0.0, 1.0);
- for (int n = 1; n <= nmax_; n++) {
- PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
- *(static_cast<double>(n)*zinv- D3[n - 1]);
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
- std::vector<double>& Tau) {
-
-
-
- for (int n = 0; n < nmax_; n++) {
- if (n == 0) {
-
- Pi[n] = 1.0;
- Tau[n] = (n + 1)*costheta;
- } else {
-
- Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
- : (((n + n + 1)*costheta*Pi[n - 1]
- - (n + 1)*Pi[n - 2])/n));
- Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
- }
- }
- }
- void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
- std::vector< std::vector<double> >& Tau) {
- std::vector<double> costheta(theta_.size(), 0.0);
- for (int t = 0; t < theta_.size(); t++) {
- costheta[t] = std::cos(theta_[t]);
- }
-
-
-
-
- for (int t = 0; t < theta_.size(); t++) {
- calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
-
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::ExtScattCoeffs(std::vector<std::complex<double> >& an,
- std::vector<std::complex<double> >& bn) {
- const std::vector<double>& x = size_parameter_;
- const std::vector<std::complex<double> >& m = index_;
- const int& pl = PEC_layer_position_;
- const int L = index_.size();
-
-
-
-
-
-
-
-
-
-
-
-
- int fl = (pl > 0) ? pl : 0;
- if (nmax_ <= 0) Nmax(fl);
- std::complex<double> z1, z2;
-
-
-
-
-
-
-
-
- std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
- std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
- for (int l = 0; l < L; l++) {
- Q[l].resize(nmax_ + 1);
- Ha[l].resize(nmax_);
- Hb[l].resize(nmax_);
- }
- an.resize(nmax_);
- bn.resize(nmax_);
- PsiZeta_.resize(nmax_ + 1);
- std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
- PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
-
-
-
- if (fl == pl) {
- for (int n = 0; n <= nmax_; n++) {
- D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
- D3_mlxl[n] = std::complex<double>(0.0, 1.0);
- }
- } else {
- z1 = x[fl]* m[fl];
-
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- }
-
-
-
-
-
-
-
- for (int n = 0; n < nmax_; n++) {
- Ha[fl][n] = D1_mlxl[n + 1];
- Hb[fl][n] = D1_mlxl[n + 1];
- }
-
-
-
- std::complex<double> Temp, Num, Denom;
- std::complex<double> G1, G2;
- for (int l = fl + 1; l < L; l++) {
-
-
-
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
-
- calcD1D3(z1, D1_mlxl, D3_mlxl);
-
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
-
-
-
-
-
-
-
-
- Num = std::exp(-2.0*(z1.imag() - z2.imag()))
- *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
- Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (int n = 1; n <= nmax_; n++) {
- Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
- Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
- }
-
- for (int n = 1; n <= nmax_; n++) {
-
- if ((l - 1) == pl) {
- G1 = -D1_mlxlM1[n];
- G2 = -D3_mlxlM1[n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
-
- if ((l - 1) == pl) {
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- }
- }
-
-
-
-
- calcD1D3(x[L - 1], D1XL, D3XL);
-
-
- calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
-
-
-
-
-
-
- for (int n = 0; n < nmax_; n++) {
-
-
-
-
- if (pl < (L - 1)) {
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- }
- }
-
-
-
- void MultiLayerMie::InitMieCalculations() {
- isMieCalculated_ = false;
-
- Qext_ = 0;
- Qsca_ = 0;
- Qabs_ = 0;
- Qbk_ = 0;
- Qpr_ = 0;
- asymmetry_factor_ = 0;
- albedo_ = 0;
- Qsca_ch_.clear();
- Qext_ch_.clear();
- Qabs_ch_.clear();
- Qbk_ch_.clear();
- Qpr_ch_.clear();
- Qsca_ch_.resize(nmax_ - 1);
- Qext_ch_.resize(nmax_ - 1);
- Qabs_ch_.resize(nmax_ - 1);
- Qbk_ch_.resize(nmax_ - 1);
- Qpr_ch_.resize(nmax_ - 1);
- Qsca_ch_norm_.resize(nmax_ - 1);
- Qext_ch_norm_.resize(nmax_ - 1);
- Qabs_ch_norm_.resize(nmax_ - 1);
- Qbk_ch_norm_.resize(nmax_ - 1);
- Qpr_ch_norm_.resize(nmax_ - 1);
-
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
- S1_.swap(tmp1);
- S2_ = S1_;
- }
-
-
-
- void MultiLayerMie::ConvertToSP() {
- isMieCalculated_ = false;
- if (target_width_.size() + width_.size() == 0)
- return;
- GenerateSizeParameter();
- GenerateIndex();
- if (size_parameter_.size() != index_.size())
- throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::RunMieCalculations() {
- isMieCalculated_ = false;
- ConvertToSP();
- nmax_ = nmax_preset_;
- if (size_parameter_.size() != index_.size())
- throw std::invalid_argument("Each size parameter should have only one index!");
- if (size_parameter_.size() == 0)
- throw std::invalid_argument("Initialize model first!");
- const std::vector<double>& x = size_parameter_;
-
- ExtScattCoeffs(an_, bn_);
-
- std::vector< std::vector<double> > Pi, Tau;
- Pi.resize(theta_.size());
- Tau.resize(theta_.size());
- for (int i =0; i< theta_.size(); ++i) {
- Pi[i].resize(nmax_);
- Tau[i].resize(nmax_);
- }
- calcAllPiTau(Pi, Tau);
- InitMieCalculations();
- std::complex<double> Qbktmp(0.0, 0.0);
- std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
-
-
-
- for (int i = nmax_ - 2; i >= 0; i--) {
- const int n = i + 1;
-
- Qext_ch_norm_[i] = (an_[i].real() + bn_[i].real());
- Qext_ch_[i] = (n + n + 1.0)*Qext_ch_norm_[i];
-
- Qext_ += Qext_ch_[i];
-
- Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
- Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
- Qsca_ += Qsca_ch_[i];
-
-
-
-
-
-
-
- Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
- + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
- Qpr_ += Qpr_ch_[i];
-
- Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
- Qbktmp += Qbktmp_ch[i];
-
-
- for (int t = 0; t < theta_.size(); t++) {
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
- }
- }
- double x2 = pow2(x.back());
- Qext_ = 2.0*(Qext_)/x2;
- for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
- Qsca_ = 2.0*(Qsca_)/x2;
- for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
-
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2;
- for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
- Qabs_ = Qext_ - Qsca_;
- for (int i = 0; i < nmax_ - 1; ++i) {
- Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
- Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
- }
-
- albedo_ = Qsca_/Qext_;
- asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;
- isMieCalculated_ = true;
- nmax_used_ = nmax_;
-
-
-
- }
-
-
-
-
- void MultiLayerMie::IntScattCoeffsInit() {
- const int L = index_.size();
-
-
-
-
-
- al_n_.resize(L + 1);
- bl_n_.resize(L + 1);
- cl_n_.resize(L + 1);
- dl_n_.resize(L + 1);
- for (auto& element:al_n_) element.resize(nmax_);
- for (auto& element:bl_n_) element.resize(nmax_);
- for (auto& element:cl_n_) element.resize(nmax_);
- for (auto& element:dl_n_) element.resize(nmax_);
- std::complex<double> c_one(1.0, 0.0);
- std::complex<double> c_zero(0.0, 0.0);
-
-
- for (int i = 0; i < nmax_; ++i) {
- al_n_[L][i] = an_[i];
- bl_n_[L][i] = bn_[i];
- cl_n_[L][i] = c_one;
- dl_n_[L][i] = c_one;
- if (i < 3) printf(" (%g) ", std::abs(an_[i]));
- }
- }
-
-
-
- void MultiLayerMie::IntScattCoeffs() {
- if (!isMieCalculated_)
- throw std::invalid_argument("(IntScattCoeffs) You should run calculations first!");
- IntScattCoeffsInit();
- const int L = index_.size();
- std::vector<std::complex<double> > z(L), z1(L);
- for (int i = 0; i < L - 1; ++i) {
- z[i] =size_parameter_[i]*index_[i];
- z1[i]=size_parameter_[i]*index_[i + 1];
- }
- z[L - 1] = size_parameter_[L - 1]*index_[L - 1];
- z1[L - 1] = size_parameter_[L - 1];
- std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
- std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
- for (int l = 0; l < L; ++l) {
- D1z[l].resize(nmax_ + 1);
- D1z1[l].resize(nmax_ + 1);
- D3z[l].resize(nmax_ + 1);
- D3z1[l].resize(nmax_ + 1);
- Psiz[l].resize(nmax_ + 1);
- Psiz1[l].resize(nmax_ + 1);
- Zetaz[l].resize(nmax_ + 1);
- Zetaz1[l].resize(nmax_ + 1);
- }
- for (int l = 0; l < L; ++l) {
- calcD1D3(z[l],D1z[l],D3z[l]);
- calcD1D3(z1[l],D1z1[l],D3z1[l]);
- calcPsiZeta(z[l],D1z[l],D3z[l], Psiz[l],Zetaz[l]);
- calcPsiZeta(z1[l],D1z1[l],D3z1[l], Psiz1[l],Zetaz1[l]);
- }
- auto& m = index_;
- std::vector< std::complex<double> > m1(L);
- for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
- m1[L - 1] = std::complex<double> (1.0, 0.0);
-
- for (int l = L - 1; l >= 0; --l) {
- for (int n = 0; n < nmax_; ++n) {
-
- auto denom = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
- al_n_[l][n] = D1z[l][n + 1]*m1[l]*(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
- al_n_[l][n] /= denom;
-
- denom = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
- dl_n_[l][n] = D3z[l][n + 1]*m1[l]*(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
- dl_n_[l][n] /= denom;
-
- denom = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
- bl_n_[l][n] = D1z[l][n + 1]*m[l]*(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
- bl_n_[l][n] /= denom;
-
- denom = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
- cl_n_[l][n] = D3z[l][n + 1]*m[l]*(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
- cl_n_[l][n] /= denom;
- }
- }
-
- for (int n = 0; n < nmax_; ++n) {
- if (std::abs(al_n_[0][n]) < 1e-10) al_n_[0][n] = 0.0;
- else throw std::invalid_argument("Unstable calculation of a__0_n!");
- if (std::abs(bl_n_[0][n]) < 1e-10) bl_n_[0][n] = 0.0;
- else throw std::invalid_argument("Unstable calculation of b__0_n!");
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- for (int i = 0; i < L + 1; ++i) {
- printf("Layer =%d ---> ", i);
- for (int n = 0; n < nmax_; ++n) {
-
- printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
- n,
- al_n_[i][n].real(), al_n_[i][n].imag(),
- bl_n_[i][n].real(), bl_n_[i][n].imag(),
- cl_n_[i][n].real(), cl_n_[i][n].imag(),
- dl_n_[i][n].real(), dl_n_[i][n].imag());
- }
- printf("\n\n");
- }
- }
-
-
-
-
-
-
- void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
-
- std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
- std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero);
- std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
-
- printf("########## layer OUT ############\n");
- sphericalBessel(Rho,bj, by, bd);
- for (int n = 0; n < nmax_; n++) {
- double rn = static_cast<double>(n + 1);
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
-
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
-
- using std::sin;
- using std::cos;
- vm3o1n[0] = c_zero;
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
- vm3e1n[0] = c_zero;
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
-
-
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
- for (int i = 0; i < 3; i++) {
- Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
- Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
-
- if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
- }
- }
-
-
-
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
- {
- using std::sin;
- using std::cos;
- Ei[0] = eifac*sin(Theta)*cos(Phi);
- Ei[1] = eifac*cos(Theta)*cos(Phi);
- Ei[2] = -eifac*sin(Phi);
- }
-
- double hffact = 1.0/(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- Hs[i] = hffact*Hs[i];
- }
-
-
- std::complex<double> hffacta = hffact;
- std::complex<double> hifac = eifac*hffacta;
- {
- using std::sin;
- using std::cos;
- Hi[0] = hifac*sin(Theta)*sin(Phi);
- Hi[1] = hifac*cos(Theta)*sin(Phi);
- Hi[2] = hifac*cos(Phi);
- }
-
- for (int i = 0; i < 3; i++) {
-
- E[i] = Ei[i] + Es[i];
- H[i] = Hi[i] + Hs[i];
-
- }
- }
-
-
-
- void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
-
-
-
- std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
- std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
- std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
- std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
- int layer=0;
- std::complex<double> index_l;
- for (int i = 0; i < size_parameter_.size() - 1; ++i) {
- if (size_parameter_[i] < Rho && Rho <= size_parameter_[i + 1]) {
- layer=i;
- }
- }
- if (Rho > size_parameter_.back()) {
- layer = size_parameter_.size();
- index_l = c_one;
- } else {
- index_l = index_[layer];
- }
-
- std::complex<double> bessel_arg = Rho*index_l;
- std::complex<double>& rh = bessel_arg;
- std::complex<double> besselj_1 = std::sin(rh)/pow2(rh)-std::cos(rh)/rh;
- printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), index_l.real(), index_l.imag(), besselj_1.real(), besselj_1.imag());
- const int& l = layer;
- printf("########## layer %d ############\n",l);
-
- sphericalBessel(bessel_arg,bj, by, bd);
- printf("besselj[1]=%g,%g\n", bj[1].real(), bj[1].imag());
- printf("bessely[1]=%g,%g\n", by[1].real(), by[1].imag());
- for (int n = 0; n < nmax_; n++) {
- double rn = static_cast<double>(n + 1);
- std::complex<double> znm1 = bj[n] + c_i*by[n];
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
-
-
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
-
-
- using std::sin;
- using std::cos;
- vm3o1n[0] = c_zero;
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
-
-
-
- vm3e1n[0] = c_zero;
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
-
-
-
-
- znm1 = bj[n];
- zn = bj[n + 1];
-
-
- xxip = Rho*(bj[n]) - rn*zn;
- if (n<3)printf("\nbesselj = %g,%g", zn.real(), zn.imag());
- vm1o1n[0] = c_zero;
- vm1o1n[1] = cos(Phi)*Pi[n]*zn;
- vm1o1n[2] = -sin(Phi)*Tau[n]*zn;
- vm1e1n[0] = c_zero;
- vm1e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm1e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn1o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
-
-
- vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
-
-
-
-
-
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
-
- for (int i = 0; i < 3; i++) {
-
-
- Ei[i] = encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
- El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
- Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
- + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
-
-
-
-
-
-
-
-
-
-
- }
-
- }
-
-
- double hffact = 1.0/(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- Hl[i] = hffact*Hl[i];
- }
-
- for (int i = 0; i < 3; i++) {
-
- E[i] = El[i];
- H[i] = Hl[i];
- printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
-
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- void MultiLayerMie::RunFieldCalculations() {
-
- RunMieCalculations();
-
- IntScattCoeffs();
- std::vector<double> Pi(nmax_), Tau(nmax_);
- long total_points = coords_sp_[0].size();
- E_field_.resize(total_points);
- H_field_.resize(total_points);
- for (auto& f:E_field_) f.resize(3);
- for (auto& f:H_field_) f.resize(3);
- for (int point = 0; point < total_points; ++point) {
- const double& Xp = coords_sp_[0][point];
- const double& Yp = coords_sp_[1][point];
- const double& Zp = coords_sp_[2][point];
- printf("X=%g, Y=%g, Z=%g\n", Xp, Yp, Zp);
-
- double Rho, Phi, Theta;
- Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
-
-
- if (Rho < 1e-10) Rho = 1e-10;
-
- if (Rho == 0.0) Theta = 0.0;
- else Theta = std::acos(Zp/Rho);
-
-
- if (Xp == 0.0 && Yp == 0.0) Phi = 0.0;
- else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
-
- calcSinglePiTau(std::cos(Theta), Pi, Tau);
-
-
-
-
-
-
- std::vector<std::complex<double> > Es(3), Hs(3);
- const double outer_size = size_parameter_.back();
-
- printf("rho=%g, outer=%g ", Rho, outer_size);
- if (Rho >= outer_size) {
- fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
- printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
- } else {
- fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
- printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
- }
- std::complex<double>& Ex = E_field_[point][0];
- std::complex<double>& Ey = E_field_[point][1];
- std::complex<double>& Ez = E_field_[point][2];
- std::complex<double>& Hx = H_field_[point][0];
- std::complex<double>& Hy = H_field_[point][1];
- std::complex<double>& Hz = H_field_[point][2];
-
- {
- using std::sin;
- using std::cos;
- Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
- Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
- Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
-
- Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
- Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
- Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
- }
- printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
- Rho);
- }
-
- }
- }
|