123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite at least one of the following references:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie
- # calculation of electromagnetic near-field for a multilayered
- # sphere," Computer Physics Communications, vol. 214, May 2017,
- # pp. 225-230.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http:#www.gnu.org/licenses/>.
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- from matplotlib import pyplot as plt
- import inspect
- print("Using scattnlay from ", inspect.getfile(scattnlay))
- npts = 251
- factor = 3. # plot extent compared to sphere radius
- index_H2O = 1.33+0.j
- WL = 0.532 #mkm
- total_r = 1 #mkm
- isMP = False
- # isMP = True
- # nmax = 230
- nmax = -1
- nm = 1.0 # host medium
- x = 2.0 * np.pi * np.array([total_r], dtype=np.float64) / WL
- m = np.array((index_H2O), dtype=np.complex128) / nm
- print("x =", x)
- print("m =", m)
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
- np.array([x]), np.array([m]))
- print("Qsca = " + str(Qsca)+" terms = "+str(terms))
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
- np.array([x]), np.array([m]), mp=True)
- print("mp Qsca = " + str(Qsca)+" terms = "+str(terms))
- scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
- zero = np.zeros(npts*npts, dtype = np.float64)
- coordX, coordZ = np.meshgrid(scan, scan)
- coordX.resize(npts * npts)
- coordZ.resize(npts * npts)
- coordY = zero
- terms, E, H = fieldnlay(
- np.array([x]), np.array([m]),
- coordX, coordY, coordZ,
- mp=isMP,
- nmax=nmax
- )
- Ec = E[0, :, :]
- Er = np.absolute(Ec)
- Eabs2 = (Er[:, 0]**2 + Er[:, 1]**2 + Er[:, 2]**2)
- Eabs_data = np.resize(Eabs2, (npts, npts))
- label = r'$|E|^2$'
- pos = plt.imshow(Eabs_data,
- cmap='gnuplot',
- # cmap='jet',
- vmin=0., vmax=14
- )
- plt.colorbar(pos)
- print(np.min(Eabs_data), np.max(Eabs_data)," terms = "+str(terms))
- mp = ''
- if isMP: mp = '_mp'
- plt.savefig("R"+str(total_r)+"mkm"+mp+".jpg",
- # dpi=300
- )
- # plt.show()
|