12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- from matplotlib import pyplot as plt
- import cmath
- from scattnlay import mesomie, mie
- import numpy as np
- from_disk = np.loadtxt('rs4-d_perp.txt')
- min_lim = 0.4
- max_lim = 0.8
- omega_ratio = from_disk[0, :]
- d_perp = from_disk[1, :] + 1j*from_disk[2, :]
- c = 299792458 # m/s
- h_reduced = 6.5821e-16 # eV s
- omega_p = 5.9 # eV
- gamma = 0.1 # eV
- eps_d = 1
- def eps_m(omega):
- return 1 - omega_p * omega_p / (omega*omega + 1j*omega*gamma)
- Rs = [2.5, 5, 10, 25]
- R = 5
- Qext = []
- Qext_mie = []
- om_rat_plot = []
- # for om_rat in omega_ratio:
- for i in range(len(omega_ratio)):
- om_rat = omega_ratio[i]
- if om_rat < min_lim or om_rat > max_lim:
- continue
- omega = om_rat*omega_p
- m = cmath.sqrt(eps_m(omega))
- x = (omega/c) * R * 1e-9/h_reduced
- mesomie.calc_ab(R*10, # R in angstrem
- x, # xd
- x * m, # xm
- 1, # eps_d
- m * m, # eps_m
- 0, # d_parallel
- d_perp[i]) # d_perp
- mesomie.calc_Q()
- mie.SetLayersSize(x)
- mie.SetLayersIndex(m)
- mie.RunMieCalculation()
- Qext.append(mesomie.GetQext())
- Qext_mie.append(mie.GetQext())
- # print(x, m, Qext[-1] - mie.GetQext())
- om_rat_plot.append(om_rat)
- # print(Qext)
- plt.plot(om_rat_plot, Qext_mie, label='classic', color='gray', lw=4)
- plt.plot(om_rat_plot, Qext, label='non-classic', color='red', lw=4)
- plt.legend()
- plt.yscale('log')
- plt.xlim((0.4, 0.8))
- plt.show()
|