123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- #ifndef SRC_NMIE_NEARFIELD_HPP_
- #define SRC_NMIE_NEARFIELD_HPP_
- //**********************************************************************************//
- // Copyright (C) 2009-2021 Ovidio Pena <ovidio@bytesfall.com> //
- // Copyright (C) 2013-2021 Konstantin Ladutenko <kostyfisik@gmail.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite at least one of the following references: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie //
- // calculation of electromagnetic near-field for a multilayered //
- // sphere," Computer Physics Communications, vol. 214, May 2017, //
- // pp. 225-230. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This class implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // [3] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie //
- // calculation of electromagnetic near-field for a multilayered //
- // sphere," Computer Physics Communications, vol. 214, May 2017, //
- // pp. 225-230. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include <iostream>
- #include <iomanip>
- #include <stdexcept>
- #include <vector>
- //#include "nmie.hpp"
- namespace nmie {
- //class implementation
- //**********************************************************************************//
- // This function calculates the expansion coefficients inside the particle, //
- // required to calculate the near-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcExpanCoeffs() {
- if (!isScaCoeffsCalc_)
- throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
- isExpCoeffsCalc_ = false;
- aln_.clear(); bln_.clear(); cln_.clear(); dln_.clear();
- std::complex<FloatType> c_one(1.0, 0.0), c_zero(0.0, 0.0);
- const int L = refractive_index_.size();
- aln_.resize(L + 1);
- bln_.resize(L + 1);
- cln_.resize(L + 1);
- dln_.resize(L + 1);
- for (int l = 0; l <= L; l++) {
- aln_[l].resize(nmax_, static_cast<FloatType>(0.0));
- bln_[l].resize(nmax_, static_cast<FloatType>(0.0));
- cln_[l].resize(nmax_, static_cast<FloatType>(0.0));
- dln_[l].resize(nmax_, static_cast<FloatType>(0.0));
- }
- // Yang, paragraph under eq. A3
- // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
- for (int n = 0; n < nmax_; n++) {
- aln_[L][n] = an_[n];
- bln_[L][n] = bn_[n];
- cln_[L][n] = c_one;
- dln_[L][n] = c_one;
- }
- std::vector<std::complex<FloatType> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
- std::vector<std::complex<FloatType> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
- std::complex<FloatType> denomZeta, denomPsi, T1, T2, T3, T4;
- auto &m = refractive_index_;
- std::vector< std::complex<FloatType> > m1(L);
- for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
- m1[L - 1] = std::complex<FloatType> (1.0, 0.0);
- std::complex<FloatType> z, z1;
- for (int l = L - 1; l >= 0; l--) {
- if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
- for (int n = 0; n < nmax_; n++) {
- // aln
- aln_[l][n] = c_zero;
- // bln
- bln_[l][n] = c_zero;
- // cln
- cln_[l][n] = c_zero;
- // dln
- dln_[l][n] = c_zero;
- }
- } else { // Regular material, just do the calculation
- z = size_param_[l]*m[l];
- z1 = size_param_[l]*m1[l];
- calcD1D3(z, D1z, D3z);
- calcD1D3(z1, D1z1, D3z1);
- calcPsiZeta(z, Psiz, Zetaz);
- calcPsiZeta(z1, Psiz1, Zetaz1);
- for (int n = 0; n < nmax_; n++) {
- int n1 = n + 1;
- denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
- denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]);
- T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
- T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
- T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
- T4 = cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
- // aln
- aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
- // bln
- bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
- // cln
- cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
- // dln
- dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
- } // end of all n
- } // end PEC condition
- } // end of all l
- int print_precision = 16;
- #ifdef MULTI_PRECISION
- print_precision = MULTI_PRECISION;
- #endif
- // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
- int print_count = 0;
- for (int n = 0; n < nmax_; ++n) {
- if (cabs(aln_[0][n]) > 1e-10 && print_count < 2) {
- print_count++;
- std::cout<< std::setprecision(print_precision)
- << "Warning: Potentially unstable calculation of aln[0]["
- << n << "] = "<< aln_[0][n] << " which is expected to be exact zero!"<<std::endl;
- }
- if (cabs(bln_[0][n]) > 1e-10 && print_count < 2) {
- print_count++;
- std::cout<< std::setprecision(print_precision)
- << "Warning: Potentially unstable calculation of bln[0]["
- << n << "] = "<< bln_[0][n] << " which is expected to be exact zero!" <<std::endl;
- }
- aln_[0][n] = 0.0;
- bln_[0][n] = 0.0;
- }
- isExpCoeffsCalc_ = true;
- } // end of void MultiLayerMie::calcExpanCoeffs()
- template <typename FloatType>
- void MultiLayerMie<FloatType>::convertFieldsFromSphericalToCartesian() {
- long total_points = coords_polar_.size();
- E_.clear(); H_.clear();
- Eabs_.clear(); Habs_.clear();
- for (int point=0; point < total_points; point++) {
- auto Theta = coords_polar_[point][1];
- auto Phi = coords_polar_[point][2];
- auto Es = Es_[point];
- auto Hs = Hs_[point];
- using nmm::sin;
- using nmm::cos;
- E_.push_back({ sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2],
- sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2],
- cos(Theta)*Es[0] - sin(Theta)*Es[1]});
- H_.push_back({ sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2],
- sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2],
- cos(Theta)*Hs[0] - sin(Theta)*Hs[1]});
- Eabs_.push_back(vabs(E_.back()));
- Habs_.push_back(vabs(H_.back()));
- }
- } // end of void MultiLayerMie::convertFieldsFromSphericalToCartesian()
- //**********************************************************************************//
- // This function calculates the electric (E) and magnetic (H) fields inside and //
- // around the particle. //
- //
- // Main trouble of near-field evaluations is supposed to originate from special functions
- // evaluation, so we expect that nmax needed for the convergence is the size
- // of Psi vector.
- // //
- // Input parameters (coordinates of the point): //
- // Rho: Radial distance //
- // Phi: Azimuthal angle //
- // Theta: Polar angle //
- // mode_n: mode order. //
- // -1 - use all modes (all_) //
- // 1 - use dipole mode only //
- // 2 - use quadrupole mode only //
- // ... //
- // mode_type: only used when mode_n != -1 //
- // 0 - electric only //
- // 1 - magnetic only //
- // //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic fields //
- //**********************************************************************************//
- template <typename FloatType> template <typename evalType>
- void MultiLayerMie<FloatType>::calcFieldByComponents(const evalType Rho,
- const evalType Theta, const evalType Phi,
- const std::vector<std::complex<evalType> > &Psi,
- const std::vector<std::complex<evalType> > &D1n,
- const std::vector<std::complex<evalType> > &Zeta,
- const std::vector<std::complex<evalType> > &D3n,
- const std::vector<evalType> &Pi,
- const std::vector<evalType> &Tau,
- std::vector<std::complex<evalType> > &E,
- std::vector<std::complex<evalType> > &H,
- std::vector<bool> &isConvergedE,
- std::vector<bool> &isConvergedH,
- bool isMarkUnconverged) {
- auto nmax = Psi.size() - 1;
- std::complex<evalType> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
- // auto c_nan = ConvertComplex<FloatType>(std::complex<double>(std::nan(""), std::nan("")));
- // Vector containing precomputed integer powers of i to avoid computation
- std::vector<std::complex<evalType> > ipow = {c_one, c_i, -c_one, -c_i};
- std::vector<std::complex<evalType> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
- std::vector<std::complex<evalType> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
- std::complex<evalType> ml;
- // Initialize E and H
- for (int i = 0; i < 3; i++) {
- E[i] = c_zero;
- H[i] = c_zero;
- }
- const unsigned L = refractive_index_.size();
- for (int n = 0; n < nmax_; n++) {
- cln_[L][n] = c_zero;
- dln_[L][n] = c_zero;
- }
- unsigned int l;
- GetIndexAtRadius(Rho, ml, l);
- isConvergedE = {false, false, false}, isConvergedH = {false, false, false};
- // evalType E0 = 0, H0=0;
- std::vector< std::complex<evalType> > Ediff_prev = {{0.,0.},{0.,0.},{0.,0.}},
- Hdiff_prev = {{0.,0.},{0.,0.},{0.,0.}};
- for (unsigned int n = 0; n < nmax; n++) {
- if ( isConvergedE[0] && isConvergedE[1] && isConvergedE[2]
- && isConvergedH[0] && isConvergedH[1] && isConvergedH[2]) {
- std::cout<<"Near-field early convergence at nmax = "<<n+1<<std::endl;
- break;
- }
- int n1 = n + 1;
- auto rn = static_cast<evalType>(n1);
- // using BH 4.12 and 4.50
- calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
- calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
- // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
- std::complex<evalType> En = ipow[n1 % 4]
- *static_cast<evalType>((rn + rn + 1.0)/(rn*rn + rn));
- std::complex<evalType> Ediff, Hdiff;
- std::complex<FloatType> Ediff_ft, Hdiff_ft;
- auto aln = ConvertComplex<evalType>(aln_[l][n]);
- auto bln = ConvertComplex<evalType>(bln_[l][n]);
- auto cln = ConvertComplex<evalType>(cln_[l][n]);
- auto dln = ConvertComplex<evalType>(dln_[l][n]);
- for (int i = 0; i < 3; i++) {
- if (isConvergedE[i] && isConvergedH[i]) continue; // TODO is it safe?
- Ediff = En*( cln*M1o1n[i] - c_i*dln*N1e1n[i]
- + c_i*aln*N3e1n[i] - bln*M3o1n[i]);
- Hdiff = En*( -dln*M1e1n[i] - c_i*cln*N1o1n[i]
- + c_i*bln*N3o1n[i] + aln*M3e1n[i]);
- Ediff_ft = ConvertComplex<FloatType>(Ediff);
- Hdiff_ft = ConvertComplex<FloatType>(Hdiff);
- if ( nmm::isnan(Ediff_ft.real()) || nmm::isnan(Ediff_ft.imag()) ||
- nmm::isnan(Hdiff_ft.real()) || nmm::isnan(Hdiff_ft.imag()) ) {
- std::cout << "Unexpected truncation during near-field evaluation at n = "<< n
- << " (of total nmax = "<<nmax<<")!!!"<<std::endl;
- break;
- }
- if (n>0) {
- if (
- (cabs(Ediff_prev[i]) <= cabs(E[i]) * nearfield_convergence_threshold_)
- && (cabs(Ediff) <= cabs(E[i]) * nearfield_convergence_threshold_)
- ) isConvergedE[i] = true;
- if (
- (cabs(Hdiff_prev[i]) <= cabs(H[i]) * nearfield_convergence_threshold_)
- && (cabs(Hdiff) <= cabs(H[i]) * nearfield_convergence_threshold_)
- ) isConvergedH[i] = true;
- }
- Ediff_prev[i] = Ediff;
- Hdiff_prev[i] = Hdiff;
- if ((!isConvergedH[i] || !isConvergedE[i]) && n==nmax-1 && GetFieldConvergence()) {
- std::cout<<"Econv:"<<cabs(Ediff)/cabs(E[i])<<" Hconv:"<<cabs(Hdiff)/cabs(H[i])<<std::endl;
- }
- if (mode_n_ == Modes::kAll) {
- // electric field E [V m - 1] = EF*E0
- E[i] += Ediff;
- H[i] += Hdiff;
- continue;
- }
- if (n == 0) {
- }
- if (n1 == mode_n_) {
- if (mode_type_ == Modes::kElectric || mode_type_ == Modes::kAll) {
- E[i] += En*( -c_i*dln*N1e1n[i]
- + c_i*aln*N3e1n[i]);
- H[i] += En*(-dln*M1e1n[i]
- +aln*M3e1n[i]);
- //std::cout << mode_n_;
- }
- if (mode_type_ == Modes::kMagnetic || mode_type_ == Modes::kAll) {
- E[i] += En*( cln*M1o1n[i]
- - bln*M3o1n[i]);
- H[i] += En*( -c_i*cln*N1o1n[i]
- + c_i*bln*N3o1n[i]);
- //std::cout << mode_n_;
- }
- //std::cout << std::endl;
- }
- //throw std::invalid_argument("Error! Unexpected mode for field evaluation!\n mode_n="+std::to_string(mode_n)+", mode_type="+std::to_string(mode_type)+"\n=====*****=====");
- }
- if (nmm::isnan(Ediff_ft.real()) || nmm::isnan(Ediff_ft.imag()) ||
- nmm::isnan(Hdiff_ft.real()) || nmm::isnan(Hdiff_ft.imag())
- ) break;
- } // end of for all n
- // Add the incident field
- if(l==L) {
- const auto z = Rho*cos_t(Theta);
- const auto Ex = std::complex<evalType>(cos_t(z), sin_t(z));
- E[0] += Ex*cos_t(Phi)*sin_t(Theta);
- E[1] += Ex*cos_t(Phi)*cos_t(Theta);
- E[2] += -Ex*sin_t(Phi);
- const auto Hy = Ex;
- H[0] += Hy*sin_t(Theta)*sin_t(Phi);
- H[1] += Hy*cos_t(Theta)*sin_t(Phi);
- H[2] += Hy*cos_t(Phi);
- }
- if( (!isConvergedE[0] || !isConvergedE[1] ||!isConvergedE[2] ||
- !isConvergedH[0] || !isConvergedH[1] ||!isConvergedH[2] ) && GetFieldConvergence()) {
- std::cout << "Field evaluation failed to converge an nmax = "<< nmax << std::endl;
- std::cout << "Near-field convergence threshold: "<<nearfield_convergence_threshold_<<std::endl;
- if (isMarkUnconverged) { //mark as NaN
- for(auto &ee :E) ee /= c_zero;
- for(auto &ee :H) ee /= c_zero;
- }
- }
- // magnetic field
- std::complex<evalType> hffact = ml/static_cast<evalType>(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- H[i] = hffact*H[i];
- }
- } // end of MultiLayerMie::calcFieldByComponents(...)
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to 0 (zero) and the function will calculate it. //
- // ncoord: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // mode_n: mode order. //
- // -1 - use all modes (all_) //
- // 1 - use dipole mode only //
- // 2 - use quadrupole mode only //
- // ... //
- // mode_type: only used when mode_n != -1 //
- // 0 - electric only //
- // 1 - magnetic only //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunFieldCalculation(bool isMarkUnconverged) {
- // Calculate scattering coefficients an_ and bn_
- calcScattCoeffs();
- // Calculate expansion coefficients aln_, bln_, cln_, and dln_
- calcExpanCoeffs();
- std::vector<bool> isConvergedE = {false, false, false}, isConvergedH = {false, false, false};
- isConvergedE_ = {true, true, true}, isConvergedH_ = {true, true, true};
- Es_.clear(); Hs_.clear(); coords_polar_.clear();
- long total_points = coords_[0].size();
- for (int point = 0; point < total_points; point++) {
- const FloatType &Xp = coords_[0][point];
- const FloatType &Yp = coords_[1][point];
- const FloatType &Zp = coords_[2][point];
- // Convert to spherical coordinates
- auto Rho = nmm::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
- // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
- auto Theta = (Rho > 0.0) ? nmm::acos(Zp/Rho) : 0.0;
- // std::atan2 should take care of any special cases, e.g. Xp=Yp=0, etc.
- auto Phi = nmm::atan2(Yp,Xp);
- coords_polar_.push_back({Rho, Theta, Phi});
- // Avoid convergence problems due to Rho too small
- if (Rho < 1e-5) Rho = 1e-5;
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // This array contains the fields in spherical coordinates
- std::vector<std::complex<FloatType> > Es(3), Hs(3);
- // Do the actual calculation of electric and magnetic field
- std::vector<std::complex<FloatType> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
- std::vector<FloatType> Pi(nmax_), Tau(nmax_);
- std::complex<FloatType> ml;
- GetIndexAtRadius(Rho, ml);
- // Calculate logarithmic derivative of the Ricatti-Bessel functions
- calcD1D3(Rho*ml, D1n, D3n);
- // Calculate Ricatti-Bessel functions
- calcPsiZeta(Rho*ml, Psi, Zeta);
- // Calculate angular functions Pi and Tau
- calcPiTau(nmm::cos(Theta), Pi, Tau);
- calcFieldByComponents(Rho, Theta, Phi, Psi, D1n, Zeta, D3n, Pi, Tau, Es, Hs,
- isConvergedE, isConvergedH, isMarkUnconverged);
- UpdateConvergenceStatus(isConvergedE, isConvergedH);
- Es_.push_back(Es);
- Hs_.push_back(Hs);
- } // end of for all field coordinates
- convertFieldsFromSphericalToCartesian();
- } // end of MultiLayerMie::RunFieldCalculation()
- // TODO do we really need this eval_delta()?
- template <typename FloatType>
- double eval_delta(const unsigned int steps, const double from_value, const double to_value) {
- auto delta = std::abs(from_value - to_value);
- if (steps < 2) return delta;
- delta /= static_cast<double>(steps-1);
- // We have a limited double precision evaluation of special functions, typically it is 1e-10.
- if ( (2.*delta)/std::abs(from_value+to_value) < 1e-9)
- throw std::invalid_argument("Error! The step is too fine, not supported!");
- return delta;
- }
- // ml - refractive index
- // l - Layer number
- template <typename FloatType> template <typename evalType>
- void MultiLayerMie<FloatType>::GetIndexAtRadius(const evalType Rho,
- std::complex<evalType> &ml,
- unsigned int &l) {
- l = 0;
- if (Rho > size_param_.back()) {
- l = size_param_.size();
- ml = std::complex<evalType>(1.0, 0.0);
- } else {
- for (int i = size_param_.size() - 1; i >= 0 ; i--) {
- if (Rho <= size_param_[i]) {
- l = i;
- }
- }
- ml = ConvertComplex<evalType>(refractive_index_[l]);
- }
- }
- template <typename FloatType> template <typename evalType>
- void MultiLayerMie<FloatType>::GetIndexAtRadius(const evalType Rho,
- std::complex<evalType> &ml) {
- unsigned int l;
- GetIndexAtRadius(Rho, ml, l);
- }
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcMieSeriesNeededToConverge(const FloatType Rho, int nmax_in) {
- if (nmax_in < 1) {
- auto required_near_field_nmax = calcNmax(Rho);
- SetMaxTerms(required_near_field_nmax);
- } else {
- SetMaxTerms(nmax_in);
- }
- // Calculate scattering coefficients an_ and bn_
- calcScattCoeffs();
- // We might be limited with available machine precision
- available_maximal_nmax_ = nmax_;
- // Calculate expansion coefficients aln_, bln_, cln_, and dln_
- calcExpanCoeffs();
- }
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcRadialOnlyDependantFunctions(const double from_Rho, const double to_Rho,
- std::vector<std::vector<std::complex<FloatType> > > &Psi,
- std::vector<std::vector<std::complex<FloatType> > > &D1n,
- std::vector<std::vector<std::complex<FloatType> > > &Zeta,
- std::vector<std::vector<std::complex<FloatType> > > &D3n,
- int nmax_in) {
- auto radius_points = Psi.size();
- std::vector<std::vector<std::complex<FloatType> > > PsiZeta(radius_points);
- double delta_Rho = eval_delta<double>(radius_points, from_Rho, to_Rho);
- for (unsigned int j=0; j < radius_points; j++) {
- auto Rho = static_cast<FloatType>(from_Rho + j*delta_Rho);
- // if (Rho < 1e-5) Rho = 1e-5; // TODO do we need this?.
- int near_field_nmax = nmax_in;
- if (nmax_in < 1) near_field_nmax = calcNmax(Rho);
- // Skip if not enough terms in Mie series (i.e. required near field nmax > available terms )
- if (near_field_nmax > available_maximal_nmax_) near_field_nmax = available_maximal_nmax_;
- Psi[j].resize(near_field_nmax + 1, static_cast<FloatType>(0.0)); D1n[j].resize(near_field_nmax + 1, static_cast<FloatType>(0.0));
- Zeta[j].resize(near_field_nmax + 1, static_cast<FloatType>(0.0)); D3n[j].resize(near_field_nmax + 1, static_cast<FloatType>(0.0));
- PsiZeta[j].resize(near_field_nmax + 1, static_cast<FloatType>(0.0));
- std::complex<FloatType> ml;
- GetIndexAtRadius(Rho, ml);
- auto z = Rho*ml;
- evalDownwardD1(z, D1n[j]);
- evalUpwardPsi(z, D1n[j], Psi[j]);
- evalUpwardD3 (z, D1n[j], D3n[j], PsiZeta[j]);
- for (unsigned int k = 0; k < Zeta[j].size(); k++) {
- Zeta[j][k] = PsiZeta[j][k]/Psi[j][k];
- }
- }
- }
- // input parameters:
- // outer_arc_points: will be increased to the nearest power of 2.
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunFieldCalculationPolar(const int outer_arc_points,
- const int radius_points,
- const double from_Rho, const double to_Rho,
- const double from_Theta, const double to_Theta,
- const double from_Phi, const double to_Phi,
- const bool isMarkUnconverged,
- int nmax_in) {
- if (from_Rho > to_Rho || from_Theta > to_Theta || from_Phi > to_Phi
- || outer_arc_points < 1 || radius_points < 1
- || from_Rho < 0.)
- throw std::invalid_argument("Error! Invalid argument for RunFieldCalculationPolar() !");
- // auto nmax_old = nmax_;
- int theta_points = 0, phi_points = 0;
- if (to_Theta-from_Theta > to_Phi-from_Phi) {
- theta_points = outer_arc_points;
- phi_points = static_cast<int>((to_Phi-from_Phi)/(to_Theta-from_Theta) * outer_arc_points);
- } else {
- phi_points = outer_arc_points;
- theta_points = static_cast<int>((to_Theta-from_Theta)/(to_Phi-from_Phi) * outer_arc_points);
- }
- if (theta_points == 0) theta_points = 1;
- if (phi_points == 0) phi_points = 1;
- calcMieSeriesNeededToConverge(to_Rho, nmax_in);
- std::vector<std::vector<FloatType> > Pi(theta_points), Tau(theta_points);
- calcPiTauAllTheta(from_Theta, to_Theta, Pi, Tau);
- std::vector<std::vector<std::complex<FloatType> > > Psi(radius_points), D1n(radius_points),
- Zeta(radius_points), D3n(radius_points), PsiZeta(radius_points);
- calcRadialOnlyDependantFunctions(from_Rho, to_Rho,
- Psi, D1n, Zeta, D3n,
- nmax_in);
- // std::cout<<"Done evaluation of special functions."<<std::endl;
- double delta_Rho = eval_delta<double>(radius_points, from_Rho, to_Rho);
- double delta_Theta = eval_delta<double>(theta_points, from_Theta, to_Theta);
- double delta_Phi = eval_delta<double>(phi_points, from_Phi, to_Phi);
- Es_.clear(); Hs_.clear(); coords_polar_.clear();
- std::vector<bool> isConvergedE = {false, false, false}, isConvergedH = {false, false, false};
- isConvergedE_ = {true, true, true}, isConvergedH_ = {true, true, true};
- for (int j=0; j < radius_points; j++) {
- auto Rho = from_Rho + j * delta_Rho;
- std::vector< std::complex<double> > Psi_dp = ConvertComplexVector<double>(Psi[j]);
- std::vector< std::complex<double> > Zeta_dp = ConvertComplexVector<double>(Zeta[j]);
- std::vector< std::complex<double> > D1n_dp = ConvertComplexVector<double>(D1n[j]);
- std::vector< std::complex<double> > D3n_dp = ConvertComplexVector<double>(D3n[j]);
- for (int i = 0; i < theta_points; i++) {
- auto Theta = from_Theta + i * delta_Theta;
- std::vector<double> Pi_dp = ConvertVector<double>(Pi[i]);
- std::vector<double> Tau_dp = ConvertVector<double>(Tau[i]);
- for (int k = 0; k < phi_points; k++) {
- auto Phi = from_Phi + k * delta_Phi;
- coords_polar_.push_back({Rho, Theta, Phi});
- std::vector<std::complex<double> > Es(3), Hs(3);
- calcFieldByComponents( Rho, Theta, Phi,
- Psi_dp, D1n_dp, Zeta_dp, D3n_dp, Pi_dp, Tau_dp,
- Es, Hs, isConvergedE, isConvergedH,
- isMarkUnconverged);
- UpdateConvergenceStatus(isConvergedE, isConvergedH);
- Es_.push_back(ConvertComplexVector<FloatType>(Es));
- Hs_.push_back(ConvertComplexVector<FloatType>(Hs));
- }
- }
- }
- convertFieldsFromSphericalToCartesian();
- }
- template <typename FloatType>
- void MultiLayerMie<FloatType>::UpdateConvergenceStatus(std::vector<bool> isConvergedE, std::vector<bool> isConvergedH) {
- for (int i = 0; i< 3; i++) isConvergedE_[i] = isConvergedE_[i] && isConvergedE[i];
- for (int i = 0; i< 3; i++) isConvergedH_[i] = isConvergedH_[i] && isConvergedH[i];
- }
- template <typename FloatType>
- bool MultiLayerMie<FloatType>::GetFieldConvergence () {
- bool convergence = true;
- for (auto conv:isConvergedE_) convergence = convergence && conv;
- for (auto conv:isConvergedH_) convergence = convergence && conv;
- return convergence;
- }
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunFieldCalculationCartesian(const int first_side_points,
- const int second_side_points,
- const double relative_side_length,
- const int plane_selected,
- const double at_x, const double at_y,
- const double at_z,
- const bool isMarkUnconverged,
- const int nmax_in) {
- SetMaxTerms(nmax_in);
- std::vector<FloatType> Xp(0), Yp(0), Zp(0);
- if (size_param_.size()<1) throw "Expect size_param_ to have at least one element before running a simulation";
- const FloatType total_R = size_param_.back();
- const FloatType second_side_max_coord_value = total_R * relative_side_length;
- // TODO add test if side_1_points <= 1 or side_2_points <= 1
- const FloatType space_step = second_side_max_coord_value*2/( (second_side_points<2 ? 2 : second_side_points) - 1.0);
- auto push_coords = [&](const int nx, const int ny, const int nz) {
- const FloatType xi = at_x*total_R - space_step*(nx-1)/2;
- const FloatType yi = at_y*total_R - space_step*(ny-1)/2;
- const FloatType zi = at_z*total_R - space_step*(nz-1)/2;
- for (int i = 0; i < nx; i++) {
- for (int j = 0; j < ny; j++) {
- for (int k = 0; k < nz; k++) {
- Xp.push_back(xi + static_cast<FloatType>(i) * space_step);
- Yp.push_back(yi + static_cast<FloatType>(j) * space_step);
- Zp.push_back(zi + static_cast<FloatType>(k) * space_step);
- }
- }
- }
- };
- // TODO add test to check that side_2_points is for z-axis
- if (plane_selected == Planes::kEk) push_coords(first_side_points, 1, second_side_points);
- if (plane_selected == Planes::kHk) push_coords(1, first_side_points, second_side_points);
- if (plane_selected == Planes::kEH) push_coords(first_side_points, second_side_points, 1);
- const unsigned int total_size = first_side_points*second_side_points;
- if (Xp.size() != total_size || Yp.size() != total_size || Zp.size() != total_size)
- throw std::invalid_argument("Error! Wrong dimension of field monitor points for cartesian grid!");
- SetFieldCoords({Xp, Yp, Zp});
- RunFieldCalculation(isMarkUnconverged);
- } // end of void MultiLayerMie<FloatType>::RunFieldCalculationCartesian(...)
- } // end of namespace nmie
- #endif // SRC_NMIE_NEARFIELD_HPP_
|