1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738 |
- ///
- /// @file nmie.cc
- /// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
- /// @date Tue Sep 3 00:38:27 2013
- /// @copyright 2013,2014,2015 Ladutenko Konstantin
- ///
- /// nmie is free software: you can redistribute it and/or modify
- /// it under the terms of the GNU General Public License as published by
- /// the Free Software Foundation, either version 3 of the License, or
- /// (at your option) any later version.
- ///
- /// nmie-wrapper is distributed in the hope that it will be useful,
- /// but WITHOUT ANY WARRANTY; without even the implied warranty of
- /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- /// GNU General Public License for more details.
- ///
- /// You should have received a copy of the GNU General Public License
- /// along with nmie-wrapper. If not, see <http://www.gnu.org/licenses/>.
- ///
- /// nmie uses nmie.c from scattnlay by Ovidio Pena
- /// <ovidio@bytesfall.com> . He has an additional condition to
- /// his library:
- // The only additional condition is that we expect that all publications //
- // describing work using this software , or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- ///
- /// @brief Wrapper class around nMie function for ease of use
- ///
- #include "nmie-wrapper.h"
- #include <array>
- #include <algorithm>
- #include <cstdio>
- #include <cstdlib>
- #include <stdexcept>
- #include <vector>
- namespace nmie {
- //helpers
- template<class T> inline T pow2(const T value) {return value*value;}
- //#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
- int round(double x) {
- return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- //emulate C call.
- int nMie_wrapper(int L, std::vector<double>& x, std::vector<std::complex<double> >& m, int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
-
- if (x.size() != L || m.size() != L)
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
- if (Theta.size() != nTheta)
- throw std::invalid_argument("Declared number of sample for Theta is not correct!");
- try {
- MultiLayerMie multi_layer_mie;
- multi_layer_mie.SetWidthSP(x);
- multi_layer_mie.SetIndexSP(m);
- multi_layer_mie.SetAngles(Theta);
-
- multi_layer_mie.RunMieCalculations();
-
- *Qext = multi_layer_mie.GetQext();
- *Qsca = multi_layer_mie.GetQsca();
- *Qabs = multi_layer_mie.GetQabs();
- *Qbk = multi_layer_mie.GetQbk();
- *Qpr = multi_layer_mie.GetQpr();
- *g = multi_layer_mie.GetAsymmetryFactor();
- *Albedo = multi_layer_mie.GetAlbedo();
- S1 = multi_layer_mie.GetS1();
- S2 = multi_layer_mie.GetS2();
- //multi_layer_mie.GetFailed();
- } catch(const std::invalid_argument& ia) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- throw std::invalid_argument(ia);
- return -1;
- }
- return 0;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
- if (x.size() != L || m.size() != L)
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
- if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
- || E.size() != ncoord || H.size() != ncoord)
- throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
- for (auto f:E)
- if (f.size() != 3)
- throw std::invalid_argument("Field E is not 3D!");
- for (auto f:H)
- if (f.size() != 3)
- throw std::invalid_argument("Field H is not 3D!");
- try {
- MultiLayerMie multi_layer_mie;
- //multi_layer_mie.SetPEC(pl);
- multi_layer_mie.SetWidthSP(x);
- multi_layer_mie.SetIndexSP(m);
- multi_layer_mie.SetFieldPointsSP({Xp_vec, Yp_vec, Zp_vec});
- multi_layer_mie.RunFieldCalculations();
- E = multi_layer_mie.GetFieldE();
- H = multi_layer_mie.GetFieldH();
- //multi_layer_mie.GetFailed();
- } catch(const std::invalid_argument& ia) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- throw std::invalid_argument(ia);
- return - 1;
- }
- return 0;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::GetFailed() {
- double faild_x = 9.42477796076938;
- //double faild_x = 9.42477796076937;
- std::complex<double> z(faild_x, 0.0);
- std::vector<int> nmax_local_array = {20, 100, 500, 2500};
- for (auto nmax_local : nmax_local_array) {
- std::vector<std::complex<double> > D1_failed(nmax_local + 1);
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
- for (int n = nmax_local; n > 0; n--) {
- D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
- }
- printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
- faild_x, nmax_local, D1_failed[0].real());
- }
- printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
- calcD1confra(0,z).real());
- //D1[nmax_] = calcD1confra(nmax_, z);
-
-
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetQext() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qext_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetQabs() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qabs_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<double> MultiLayerMie::GetQabs_channel() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qabs_ch_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- // std::vector<double> NACS(nmax_ - 1, 0.0);
- // double x2 = pow2(size_parameter_.back());
- // for (int i = 0; i < nmax_ - 1; ++i) {
- // const int n = i + 1;
- // NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1));
- // // if (NACS[i] > 0.250000001)
- // // throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
- // }
- //return NACS;
- return Qabs_ch_norm_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetQsca() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qsca_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<double> MultiLayerMie::GetQsca_channel() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qsca_ch_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<double> MultiLayerMie::GetQsca_channel_normalized() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- // std::vector<double> NACS(nmax_ - 1, 0.0);
- // double x2 = pow2(size_parameter_.back());
- // for (int i = 0; i < nmax_ - 1; ++i) {
- // const int n = i + 1;
- // NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1.0));
- // }
- // return NACS;
- return Qsca_ch_norm_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetQbk() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qbk_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetQpr() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qpr_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetAsymmetryFactor() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return asymmetry_factor_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetAlbedo() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return albedo_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<std::complex<double> > MultiLayerMie::GetS1() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S1_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector<std::complex<double> > MultiLayerMie::GetS2() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S2_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::AddTargetLayer(double width, std::complex<double> layer_index) {
- isMieCalculated_ = false;
- if (width <= 0)
- throw std::invalid_argument("Layer width should be positive!");
- target_width_.push_back(width);
- target_index_.push_back(layer_index);
- } // end of void MultiLayerMie::AddTargetLayer(...)
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetTargetPEC(double radius) {
- isMieCalculated_ = false;
- if (target_width_.size() != 0 || target_index_.size() != 0)
- throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
- // Add layer of any index...
- AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
- // ... and mark it as PEC
- SetPEC(0.0);
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetCoatingIndex(std::vector<std::complex<double> > index) {
- isMieCalculated_ = false;
- coating_index_.clear();
- for (auto value : index) coating_index_.push_back(value);
- } // end of void MultiLayerMie::SetCoatingIndex(std::vector<complex> index);
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
- isMieCalculated_ = false;
- theta_ = angles;
- // theta_.clear();
- // for (auto value : angles) theta_.push_back(value);
- } // end of SetAngles()
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetCoatingWidth(std::vector<double> width) {
- isMieCalculated_ = false;
- coating_width_.clear();
- for (auto w : width)
- if (w <= 0)
- throw std::invalid_argument("Coating width should be positive!");
- else coating_width_.push_back(w);
- }
- // end of void MultiLayerMie::SetCoatingWidth(...);
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetWidthSP(const std::vector<double>& size_parameter) {
- isMieCalculated_ = false;
- size_parameter_.clear();
- double prev_size_parameter = 0.0;
- for (auto layer_size_parameter : size_parameter) {
- if (layer_size_parameter <= 0.0)
- throw std::invalid_argument("Size parameter should be positive!");
- if (prev_size_parameter > layer_size_parameter)
- throw std::invalid_argument
- ("Size parameter for next layer should be larger than the previous one!");
- prev_size_parameter = layer_size_parameter;
- size_parameter_.push_back(layer_size_parameter);
- }
- }
- // end of void MultiLayerMie::SetWidthSP(...);
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetIndexSP(const std::vector< std::complex<double> >& index) {
- isMieCalculated_ = false;
- //index_.clear();
- index_ = index;
- // for (auto value : index) index_.push_back(value);
- } // end of void MultiLayerMie::SetIndexSP(...);
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp) {
- if (coords_sp.size() != 3)
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
- if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size())
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
- coords_sp_ = coords_sp;
- // for (int i = 0; i < coords_sp_[0].size(); ++i) {
- // printf("%g, %g, %g\n", coords_sp_[0][i], coords_sp_[1][i], coords_sp_[2][i]);
- // }
- } // end of void MultiLayerMie::SetFieldPointsSP(...)
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetPEC(int layer_position) {
- isMieCalculated_ = false;
- if (layer_position < 0)
- throw std::invalid_argument("Error! Layers are numbered from 0!");
- PEC_layer_position_ = layer_position;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::SetMaxTermsNumber(int nmax) {
- isMieCalculated_ = false;
- nmax_preset_ = nmax;
- //debug
- printf("Setting max terms: %d\n", nmax_preset_);
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::GenerateSizeParameter() {
- isMieCalculated_ = false;
- size_parameter_.clear();
- double radius = 0.0;
- for (auto width : target_width_) {
- radius += width;
- size_parameter_.push_back(2*PI_*radius/wavelength_);
- }
- for (auto width : coating_width_) {
- radius += width;
- size_parameter_.push_back(2*PI_*radius/wavelength_);
- }
- total_radius_ = radius;
- } // end of void MultiLayerMie::GenerateSizeParameter();
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::GenerateIndex() {
- isMieCalculated_ = false;
- index_.clear();
- for (auto index : target_index_) index_.push_back(index);
- for (auto index : coating_index_) index_.push_back(index);
- } // end of void MultiLayerMie::GenerateIndex();
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double MultiLayerMie::GetTotalRadius() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- if (total_radius_ == 0) GenerateSizeParameter();
- return total_radius_;
- } // end of double MultiLayerMie::GetTotalRadius();
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- std::vector< std::vector<double> >
- MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- std::vector< std::vector<double> > spectra;
- double step_WL = (to_WL - from_WL)/static_cast<double>(samples);
- double wavelength_backup = wavelength_;
- long fails = 0;
- for (double WL = from_WL; WL < to_WL; WL += step_WL) {
- wavelength_ = WL;
- try {
- RunMieCalculations();
- } catch(const std::invalid_argument& ia) {
- fails++;
- continue;
- }
- //printf("%3.1f ",WL);
- spectra.push_back(std::vector<double>({wavelength_, Qext_, Qsca_, Qabs_, Qbk_}));
- } // end of for each WL in spectra
- printf("Spectrum has %li fails\n",fails);
- wavelength_ = wavelength_backup;
- return spectra;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ClearTarget() {
- isMieCalculated_ = false;
- target_width_.clear();
- target_index_.clear();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ClearCoating() {
- isMieCalculated_ = false;
- coating_width_.clear();
- coating_index_.clear();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ClearLayers() {
- isMieCalculated_ = false;
- ClearTarget();
- ClearCoating();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ClearAllDesign() {
- isMieCalculated_ = false;
- ClearLayers();
- size_parameter_.clear();
- index_.clear();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Computational core
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculate Nstop - equation (17)
- //
- void MultiLayerMie::Nstop() {
- const double& xL = size_parameter_.back();
- if (xL <= 8) {
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
- } else if (xL <= 4200) {
- nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
- } else {
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
- }
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::Nmax(int first_layer) {
- int ri, riM1;
- const std::vector<double>& x = size_parameter_;
- const std::vector<std::complex<double> >& m = index_;
- Nstop(); // Set initial nmax_ value
- for (int i = first_layer; i < x.size(); i++) {
- if (i > PEC_layer_position_)
- ri = round(std::abs(x[i]*m[i]));
- else
- ri = 0;
- nmax_ = std::max(nmax_, ri);
- // first layer is pec, if pec is present
- if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
- riM1 = round(std::abs(x[i - 1]* m[i]));
- else
- riM1 = 0;
- nmax_ = std::max(nmax_, riM1);
- }
- nmax_ += 15; // Final nmax_ value
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
- // and their derivatives for a given complex value z. See pag. 87 B&H. //
- // //
- // Input parameters: //
- // z: Real argument to evaluate jn and h1n //
- // nmax_: Maximum number of terms to calculate jn and h1n //
- // //
- // Output parameters: //
- // jn, h1n: Spherical Bessel and Hankel functions //
- // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
- // //
- // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
- // Comp. Phys. Comm. 47 (1987) 245-257. //
- // //
- // Complex spherical Bessel functions from n=0..nmax_ - 1 for z in the upper half //
- // plane (Im(z) > -3). //
- // //
- // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
- // j'[n] = d[j/n(z)]/dz //
- // h1[n] = h[0]/n(z) Irregular Hankel function: //
- // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
- // = (sin(z)-i*cos(z))/z //
- // = -i*exp(i*z)/z //
- // Using complex CF1, and trigonometric forms for n=0 solutions. //
- //**********************************************************************************//
- void MultiLayerMie::sbesjh(std::complex<double> z,
- std::vector<std::complex<double> >& jn,
- std::vector<std::complex<double> >& jnp,
- std::vector<std::complex<double> >& h1n,
- std::vector<std::complex<double> >& h1np) {
- const int limit = 20000;
- const double accur = 1.0e-12;
- const double tm30 = 1e-30;
- double absc;
- std::complex<double> zi, w;
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
- if ((absc < accur) || (std::imag(z) < -3.0)) {
- throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
- }
- zi = 1.0/z;
- w = zi + zi;
- pl = double(nmax_)*zi;
- f = pl + zi;
- b = f + f + zi;
- d = 0.0;
- c = f;
- for (int n = 0; n < limit; n++) {
- d = b - d;
- c = b - 1.0/c;
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
- if (absc < tm30) {
- d = tm30;
- }
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
- if (absc < tm30) {
- c = tm30;
- }
- d = 1.0/d;
- del = d*c;
- f = f*del;
- b += w;
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
- if (absc < accur) {
- // We have obtained the desired accuracy
- break;
- }
- }
- if (absc > accur) {
- throw std::invalid_argument("We were not able to obtain the desired accuracy");
- }
- jn[nmax_ - 1] = tm30;
- jnp[nmax_ - 1] = f*jn[nmax_ - 1];
- // Downward recursion to n=0 (N.B. Coulomb Functions)
- for (int n = nmax_ - 2; n >= 0; n--) {
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
- jnp[n] = pl*jn[n] - jn[n + 1];
- pl = pl - zi;
- }
- // Calculate the n=0 Bessel Functions
- jn0 = zi*std::sin(z);
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
- // Rescale j[n], j'[n], converting to spherical Bessel functions.
- // Recur h1[n], h1'[n] as spherical Bessel functions.
- w = 1.0/jn[0];
- pl = zi;
- for (int n = 0; n < nmax_; n++) {
- jn[n] = jn0*(w*jn[n]);
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
- if (n != 0) {
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
- // check if hankel is increasing (upward stable)
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
- jndb = z;
- h1nldb = h1n[n];
- h1nbdb = h1n[n - 1];
- }
- pl += zi;
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
- }
- }
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel functions (bj and by) and the //
- // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate bj, by and bd //
- // nmax_: Maximum number of terms to calculate bj, by and bd //
- // //
- // Output parameters: //
- // bj, by: Spherical Bessel functions //
- // bd: Logarithmic derivative //
- //**********************************************************************************//
- void MultiLayerMie::sphericalBessel(std::complex<double> z,
- std::vector<std::complex<double> >& bj,
- std::vector<std::complex<double> >& by,
- std::vector<std::complex<double> >& bd) {
- std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
- sbesjh(z, jn, jnp, h1n, h1np);
- for (int n = 0; n < nmax_; n++) {
- bj[n] = jn[n];
- by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
- bd[n] = jnp[n]/jn[n] + 1.0/z;
- }
- // std::complex<double> besselj_0 = std::sin(z)/z;
- // std::complex<double> bessely_0 = -std::cos(z)/z;
- // if (nmax_>0) {
- // bj[0] = std::sin(z)/pow2(z)-std::cos(z)/z; //bj1
- // by[0] = std::cos(z)/pow2(z)-std::sin(z)/z; //by1
- // }
- // if (nmax_>1) {
- // bj[1] = bj[0]*3.0/z-besselj_0;//bj2
- // by[1] = by[0]*3.0/z-bessely_0;//bj2
- // }
- // for (int n = 2; n < nmax_; n++) {
- // bj[n] = (2.0*n - 1.0)/z*bj[n - 1] - bj[n];
- // by[n] = (2.0*n - 1.0)/z*by[n - 1] - by[n];
- // }
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculate an - equation (5)
- std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculate bn - equation (6)
- std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculates S1 - equation (25a)
- std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
- std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // real argument (x). //
- // Equations (20a) - (21b) //
- // //
- // Input parameters: //
- // x: Real argument to evaluate Psi and Zeta //
- // nmax: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- void MultiLayerMie::calcPsiZeta(std::complex<double> z,
- std::vector<std::complex<double> > D1,
- std::vector<std::complex<double> > D3,
- std::vector<std::complex<double> >& Psi,
- std::vector<std::complex<double> >& Zeta) {
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
- //Psi[0] = std::complex<double>(std::sin(x), 0);
- std::complex<double> c_i(0.0, 1.0);
- Psi[0] = std::sin(z);
- //Zeta[0] = std::complex<double>(std::sin(x), -std::cos(x));
- Zeta[0] = std::sin(z) - c_i*std::cos(z);
- for (int n = 1; n <= nmax_; n++) {
- Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
- Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
- }
- }
- //**********************************************************************************//
- // Function CONFRA ported from MIEV0.f (Wiscombe,1979)
- // Ref. to NCAR Technical Notes, Wiscombe, 1979
- /*
- c Compute Bessel function ratio A-sub-N from its
- c continued fraction using Lentz method
- c ZINV = Reciprocal of argument of A
- c I N T E R N A L V A R I A B L E S
- c ------------------------------------
- c CAK Term in continued fraction expansion of A (Eq. R25)
- c a_k
- c CAPT Factor used in Lentz iteration for A (Eq. R27)
- c T_k
- c CNUMER Numerator in capT (Eq. R28A)
- c N_k
- c CDENOM Denominator in capT (Eq. R28B)
- c D_k
- c CDTD Product of two successive denominators of capT factors
- c (Eq. R34C)
- c xi_1
- c CNTN Product of two successive numerators of capT factors
- c (Eq. R34B)
- c xi_2
- c EPS1 Ill-conditioning criterion
- c EPS2 Convergence criterion
- c KK Subscript k of cAk (Eq. R25B)
- c k
- c KOUNT Iteration counter (used to prevent infinite looping)
- c MAXIT Max. allowed no. of iterations
- c MM + 1 and - 1, alternately
- */
- std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
- // NTMR -> nmax_ - 1 \\TODO nmax_ ?
- //int N = nmax_ - 1;
- int KK, KOUNT, MAXIT = 10000, MM;
- // double EPS1=1.0e-2;
- double EPS2=1.0e-8;
- std::complex<double> CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER;
- std::complex<double> one = std::complex<double>(1.0,0.0);
- std::complex<double> ZINV = one/z;
- // c ** Eq. R25a
- std::complex<double> CONFRA = static_cast<std::complex<double> >(N + 1)*ZINV; //debug ZINV
- MM = - 1;
- KK = 2*N +3; //debug 3
- // c ** Eq. R25b, k=2
- CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
- CDENOM = CAK;
- CNUMER = CDENOM + one/CONFRA; //-3zinv+z
- KOUNT = 1;
- //10 CONTINUE
- do { ++KOUNT;
- if (KOUNT > MAXIT) {
- printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
- throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
- }
- MM *= - 1; KK += 2; //debug mm=1 kk=5
- CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b //debug 5zinv
- // //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one
- // if (std::abs(CNUMER/CAK) >= EPS1 || std::abs(CDENOM/CAK) >= EPS1) {
- // //c ** Eq. R34
- // CNTN = CAK * CNUMER + 1.0;
- // CDTD = CAK * CDENOM + 1.0;
- // CONFRA = (CNTN/CDTD) * CONFRA; // ** Eq. R33
- // MM *= - 1; KK += 2;
- // CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
- // //c ** Eq. R35
- // CNUMER = CAK + CNUMER/CNTN;
- // CDENOM = CAK + CDENOM/CDTD;
- // ++KOUNT;
- // //GO TO 10
- // continue;
- // } else { //c *** Well-conditioned case
- {
- CAPT = CNUMER/CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
- // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
- CONFRA = CAPT * CONFRA; // ** Eq. R26
- //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
- //c ** Check for convergence; Eq. R31
- if (std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2) {
- //c ** Eq. R30
- CNUMER = CAK + one/CNUMER;
- CDENOM = CAK + one/CDENOM;
- continue;
- //GO TO 10
- } // end of if < eps2
- }
- break;
- } while(1);
- //if (N == 0) printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag());
- return CONFRA;
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a complex argument (z). //
- // Equations (16a), (16b) and (18a) - (18d) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // nmax_: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- void MultiLayerMie::calcD1D3(const std::complex<double> z,
- std::vector<std::complex<double> >& D1,
- std::vector<std::complex<double> >& D3) {
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1[nmax_] = std::complex<double>(0.0, 0.0);
- //D1[nmax_] = calcD1confra(nmax_, z);
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
-
- // printf(" D:");prn((D1[nmax_]).real()); printf("\t diff:");
- // prn((D1[nmax_] + double(nmax_)*zinv).real());
- for (int n = nmax_; n > 0; n--) {
- D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
- //D1[n - 1] = calcD1confra(n - 1, z);
- // printf(" D:");prn((D1[n - 1]).real()); printf("\t diff:");
- // prn((D1[n] + double(n)*zinv).real());
- }
- // printf("\n\n"); iformat=0;
- if (std::abs(D1[0]) > 100000.0)
- throw std::invalid_argument
- ("Unstable D1! Please, try to change input parameters!\n");
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
- *std::exp(-2.0*z.imag()));
- D3[0] = std::complex<double>(0.0, 1.0);
- for (int n = 1; n <= nmax_; n++) {
- PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
- *(static_cast<double>(n)*zinv- D3[n - 1]);
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
- }
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for all values of Theta. //
- // Equations (26a) - (26c) //
- // //
- // Input parameters: //
- // nmax_: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
- std::vector<double>& Tau) {
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- for (int n = 0; n < nmax_; n++) {
- if (n == 0) {
- // Initialize Pi and Tau
- Pi[n] = 1.0;
- Tau[n] = (n + 1)*costheta;
- } else {
- // Calculate the actual values
- Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
- : (((n + n + 1)*costheta*Pi[n - 1]
- - (n + 1)*Pi[n - 2])/n));
- Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
- }
- }
- } // end of void MultiLayerMie::calcPiTau(...)
- void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
- std::vector< std::vector<double> >& Tau) {
- std::vector<double> costheta(theta_.size(), 0.0);
- for (int t = 0; t < theta_.size(); t++) {
- costheta[t] = std::cos(theta_[t]);
- }
- // Do not join upper and lower 'for' to a single one! It will slow
- // down the code!!! (For about 0.5-2.0% of runtime, it is probably
- // due to increased cache missing rate originated from the
- // recurrence in calcPiTau...)
- for (int t = 0; t < theta_.size(); t++) {
- calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
- //calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!!
- }
- } // end of void MultiLayerMie::calcAllPiTau(...)
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
- std::vector<std::complex<double> >& bn) {
- const std::vector<double>& x = size_parameter_;
- const std::vector<std::complex<double> >& m = index_;
- const int& pl = PEC_layer_position_;
- const int L = index_.size();
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- // ***********************************************************************//
- // TODO, is it possible for PEC to have a zero index? If yes than
- // is should be:
- // int fl = (pl > - 1) ? pl : 0;
- // This will give the same result, however, it corresponds the
- // logic - if there is PEC, than first layer is PEC.
- int fl = (pl > 0) ? pl : 0;
- if (nmax_ <= 0) Nmax(fl);
- std::complex<double> z1, z2;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
- std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
- for (int l = 0; l < L; l++) {
- // D1_mlxl[l].resize(nmax_ + 1);
- // D1_mlxlM1[l].resize(nmax_ + 1);
- // D3_mlxl[l].resize(nmax_ + 1);
- // D3_mlxlM1[l].resize(nmax_ + 1);
- Q[l].resize(nmax_ + 1);
- Ha[l].resize(nmax_);
- Hb[l].resize(nmax_);
- }
- an.resize(nmax_);
- bn.resize(nmax_);
- PsiZeta_.resize(nmax_ + 1);
- std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
- PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (int n = 0; n <= nmax_; n++) {
- D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
- D3_mlxl[n] = std::complex<double>(0.0, 1.0);
- }
- } else { // Regular layer
- z1 = x[fl]* m[fl];
- // Calculate D1 and D3
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- }
- // do { \
- // ++iformat;\
- // if (iformat%5 == 0) printf("%24.16e",z1.real());
- // } while (false);
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (int n = 0; n < nmax_; n++) {
- Ha[fl][n] = D1_mlxl[n + 1];
- Hb[fl][n] = D1_mlxl[n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- std::complex<double> Temp, Num, Denom;
- std::complex<double> G1, G2;
- for (int l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
- //************************************************************//
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
- //Calculate D1 and D3 for z1
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- //Calculate D1 and D3 for z2
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
- // prn(z1.real());
- // for (auto i : D1_mlxl) { prn(i.real());
- // // prn(i.imag());
- // } printf("\n");
- //*********************************************//
- //Calculate Q, Ha and Hb in the layers fl + 1..L //
- //*********************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = std::exp(-2.0*(z1.imag() - z2.imag()))
- * std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
- Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (int n = 1; n <= nmax_; n++) {
- Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
- Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (int n = 1; n <= nmax_; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = -D1_mlxlM1[n];
- G2 = -D3_mlxlM1[n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- } // end of for Ha and Hb terms
- } // end of for layers iteration
- //**************************************//
- //Calculate D1, D3, Psi and Zeta for XL //
- //**************************************//
- // Calculate D1XL and D3XL
- calcD1D3(x[L - 1], D1XL, D3XL);
- //printf("%5.20f\n",Ha[L - 1][0].real());
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (int n = 0; n < nmax_; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- } // end of for an and bn terms
- } // end of void MultiLayerMie::ScattCoeffs(...)
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::InitMieCalculations() {
- isMieCalculated_ = false;
- // Initialize the scattering parameters
- Qext_ = 0;
- Qsca_ = 0;
- Qabs_ = 0;
- Qbk_ = 0;
- Qpr_ = 0;
- asymmetry_factor_ = 0;
- albedo_ = 0;
- Qsca_ch_.clear();
- Qext_ch_.clear();
- Qabs_ch_.clear();
- Qbk_ch_.clear();
- Qpr_ch_.clear();
- Qsca_ch_.resize(nmax_ - 1);
- Qext_ch_.resize(nmax_ - 1);
- Qabs_ch_.resize(nmax_ - 1);
- Qbk_ch_.resize(nmax_ - 1);
- Qpr_ch_.resize(nmax_ - 1);
- Qsca_ch_norm_.resize(nmax_ - 1);
- Qext_ch_norm_.resize(nmax_ - 1);
- Qabs_ch_norm_.resize(nmax_ - 1);
- Qbk_ch_norm_.resize(nmax_ - 1);
- Qpr_ch_norm_.resize(nmax_ - 1);
- // Initialize the scattering amplitudes
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
- S1_.swap(tmp1);
- S2_ = S1_;
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ConvertToSP() {
- isMieCalculated_ = false;
- if (target_width_.size() + coating_width_.size() == 0)
- return; // Nothing to convert, we suppose that SP was set directly
- GenerateSizeParameter();
- GenerateIndex();
- if (size_parameter_.size() != index_.size())
- throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send - 1 //
- // x: Array containing the size parameters of the layers [0..L - 1] //
- // m: Array containing the relative refractive indexes of the layers [0..L - 1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // nmax_: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to - 1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- void MultiLayerMie::RunMieCalculations() {
- isMieCalculated_ = false;
- ConvertToSP();
- nmax_ = nmax_preset_;
- if (size_parameter_.size() != index_.size())
- throw std::invalid_argument("Each size parameter should have only one index!");
- if (size_parameter_.size() == 0)
- throw std::invalid_argument("Initialize model first!");
- const std::vector<double>& x = size_parameter_;
- // Calculate scattering coefficients
- ScattCoeffs(an_, bn_);
- // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
- std::vector< std::vector<double> > Pi, Tau;
- Pi.resize(theta_.size());
- Tau.resize(theta_.size());
- for (int i =0; i< theta_.size(); ++i) {
- Pi[i].resize(nmax_);
- Tau[i].resize(nmax_);
- }
- calcAllPiTau(Pi, Tau);
- InitMieCalculations(); //
- std::complex<double> Qbktmp(0.0, 0.0);
- std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (int i = nmax_ - 2; i >= 0; i--) {
- const int n = i + 1;
- // Equation (27)
- Qext_ch_norm_[i] = (an_[i].real() + bn_[i].real());
- Qext_ch_[i] = (n + n + 1.0)*Qext_ch_norm_[i];
- //Qext_ch_[i] = (n + n + 1)*(an_[i].real() + bn_[i].real());
- Qext_ += Qext_ch_[i];
- // Equation (28)
- Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
- Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
- Qsca_ += Qsca_ch_[i];
- // Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
- // + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
- // Equation (29) TODO We must check carefully this equation. If we
- // remove the typecast to double then the result changes. Which is
- // the correct one??? Ovidio (2014/12/10) With cast ratio will
- // give double, without cast (n + n + 1)/(n*(n + 1)) will be
- // rounded to integer. Tig (2015/02/24)
- Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
- + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
- Qpr_ += Qpr_ch_[i];
- // Equation (33)
- Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
- Qbktmp += Qbktmp_ch[i];
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- for (int t = 0; t < theta_.size(); t++) {
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
- }
- }
- double x2 = pow2(x.back());
- Qext_ = 2.0*(Qext_)/x2; // Equation (27)
- for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
- Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
- for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
- //for (double& Q : Qsca_ch_norm_) Q = 2.0*Q/x2;
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
- for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
- Qabs_ = Qext_ - Qsca_; // Equation (30)
- for (int i = 0; i < nmax_ - 1; ++i) {
- Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
- Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
- }
-
- albedo_ = Qsca_/Qext_; // Equation (31)
- asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
- isMieCalculated_ = true;
- nmax_used_ = nmax_;
- // printf("Run Mie result: Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g \n",
- // GetQext(), GetQsca(), GetQabs(), GetQbk());
- //return nmax;
- }
-
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ScattCoeffsLayerdInit() {
- const int L = index_.size();
- // we need to fill
- // std::vector< std::vector<std::complex<double> > > al_n_, bl_n_, cl_n_, dl_n_;
- // for n = [0..nmax_) and for l=[L..0)
- // TODO: to decrease cache miss outer loop is with n and inner with reversed l
- // at the moment outer is forward l and inner in n
- al_n_.resize(L + 1);
- bl_n_.resize(L + 1);
- cl_n_.resize(L + 1);
- dl_n_.resize(L + 1);
- for (auto& element:al_n_) element.resize(nmax_);
- for (auto& element:bl_n_) element.resize(nmax_);
- for (auto& element:cl_n_) element.resize(nmax_);
- for (auto& element:dl_n_) element.resize(nmax_);
- std::complex<double> c_one(1.0, 0.0);
- std::complex<double> c_zero(0.0, 0.0);
- // Yang, paragraph under eq. A3
- // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
- for (int i = 0; i < nmax_; ++i) {
- al_n_[L][i] = an_[i];
- bl_n_[L][i] = bn_[i];
- cl_n_[L][i] = c_one;
- dl_n_[L][i] = c_one;
- if (i<3) printf(" (%g) ", std::abs(an_[i]));
- }
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::ScattCoeffsLayerd() {
- if (!isMieCalculated_)
- throw std::invalid_argument("(ScattCoeffsLayerd) You should run calculations first!");
- ScattCoeffsLayerdInit();
- const int L = index_.size();
- std::vector<std::complex<double> > z(L), z1(L);
- for (int i = 0; i < L - 1; ++i) {
- z[i] =size_parameter_[i]*index_[i];
- z1[i]=size_parameter_[i]*index_[i + 1];
- }
- z[L - 1] =size_parameter_[L - 1]*index_[L - 1];
- z1[L - 1] =size_parameter_[L - 1];
- std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
- std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
- for (int l = 0; l < L; ++l) {
- D1z[l].resize(nmax_ + 1);
- D1z1[l].resize(nmax_ + 1);
- D3z[l].resize(nmax_ + 1);
- D3z1[l].resize(nmax_ + 1);
- Psiz[l].resize(nmax_ + 1);
- Psiz1[l].resize(nmax_ + 1);
- Zetaz[l].resize(nmax_ + 1);
- Zetaz1[l].resize(nmax_ + 1);
- }
- for (int l = 0; l < L; ++l) {
- calcD1D3(z[l],D1z[l],D3z[l]);
- calcD1D3(z1[l],D1z1[l],D3z1[l]);
- calcPsiZeta(z[l],D1z[l],D3z[l], Psiz[l],Zetaz[l]);
- calcPsiZeta(z1[l],D1z1[l],D3z1[l], Psiz1[l],Zetaz1[l]);
- }
- auto& m = index_;
- std::vector< std::complex<double> > m1(L);
- for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
- m1[L - 1] = std::complex<double> (1.0, 0.0);
- // for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
- for (int l = L - 1; l >= 0; --l) {
- for (int n = 0; n < nmax_; ++n) {
- // al_n
- auto denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
- al_n_[l][n] = D1z[l][n + 1]* m1[l]
- *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
- +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
- al_n_[l][n] /= denom;
- // if (n<2) printf("denom[%d][%d]:%g \n", l, n,
- // std::abs(Psiz[l][n + 1]));
- // dl_n
- denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
- dl_n_[l][n] = D3z[l][n + 1]*m1[l]
- *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
- +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
- dl_n_[l][n] /= denom;
- // bl_n
- denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
- bl_n_[l][n] = D1z[l][n + 1]* m[l]
- *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
- +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
- bl_n_[l][n] /= denom;
- // cl_n
- denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
- cl_n_[l][n] = D3z[l][n + 1]*m[l]
- *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
- +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
- cl_n_[l][n] /= denom;
- } // end of all n
- } // end of for all l
- // Check the result and change an__0 and bn__0 for exact zero
- for (int n = 0; n < nmax_; ++n) {
- if (std::abs(al_n_[0][n]) < 1e-10) al_n_[0][n] = 0.0;
- else throw std::invalid_argument("Unstable calculation of a__0_n!");
- if (std::abs(bl_n_[0][n]) < 1e-10) bl_n_[0][n] = 0.0;
- else throw std::invalid_argument("Unstable calculation of b__0_n!");
- }
- // for (int l = 0; l < L; ++l) {
- // printf("l=%d --> ", l);
- // for (int n = 0; n < nmax_ + 1; ++n) {
- // if (n < 20) continue;
- // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
- // n,
- // D1z[l][n].real(), D3z[l][n].real(),
- // D1z1[l][n].real(), D3z1[l][n].real());
- // }
- // printf("\n\n");
- // }
- // for (int l = 0; l < L; ++l) {
- // printf("l=%d --> ", l);
- // for (int n = 0; n < nmax_ + 1; ++n) {
- // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
- // n,
- // D1z[l][n].real(), D3z[l][n].real(),
- // D1z1[l][n].real(), D3z1[l][n].real());
- // }
- // printf("\n\n");
- // }
- for (int i = 0; i < L + 1; ++i) {
- printf("Layer =%d ---> ", i);
- for (int n = 0; n < nmax_; ++n) {
- // if (n < 20) continue;
- printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
- n,
- al_n_[i][n].real(), al_n_[i][n].imag(),
- bl_n_[i][n].real(), bl_n_[i][n].imag(),
- cl_n_[i][n].real(), cl_n_[i][n].imag(),
- dl_n_[i][n].real(), dl_n_[i][n].imag());
- }
- printf("\n\n");
- }
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // external scattering field = incident + scattered
- // BH p.92 (4.37), 94 (4.45), 95 (4.50)
- // assume: medium is non-absorbing; refim = 0; Uabs = 0
- void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
-
- std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
- std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero);
- std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
- // Calculate spherical Bessel and Hankel functions
- printf("########## layer OUT ############\n");
- sphericalBessel(Rho,bj, by, bd);
- for (int n = 0; n < nmax_; n++) {
- double rn = static_cast<double>(n + 1);
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
- // using BH 4.12 and 4.50
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
-
- using std::sin;
- using std::cos;
- vm3o1n[0] = c_zero;
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
- vm3e1n[0] = c_zero;
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
-
- // scattered field: BH p.94 (4.45)
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
- for (int i = 0; i < 3; i++) {
- Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
- Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
- //if (n<3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
- if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
- }
- }
-
- // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
- // basis unit vectors = er, etheta, ephi
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
- {
- using std::sin;
- using std::cos;
- Ei[0] = eifac*sin(Theta)*cos(Phi);
- Ei[1] = eifac*cos(Theta)*cos(Phi);
- Ei[2] = -eifac*sin(Phi);
- }
- // magnetic field
- double hffact = 1.0/(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- Hs[i] = hffact*Hs[i];
- }
-
- // incident H field: BH p.26 (2.43), p.89 (4.21)
- std::complex<double> hffacta = hffact;
- std::complex<double> hifac = eifac*hffacta;
- {
- using std::sin;
- using std::cos;
- Hi[0] = hifac*sin(Theta)*sin(Phi);
- Hi[1] = hifac*cos(Theta)*sin(Phi);
- Hi[2] = hifac*cos(Phi);
- }
-
- for (int i = 0; i < 3; i++) {
- // electric field E [V m - 1] = EF*E0
- E[i] = Ei[i] + Es[i];
- H[i] = Hi[i] + Hs[i];
- // printf("ext E[%d]=%g",i,std::abs(E[i]));
- }
- } // end of void fieldExt(...)
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
- // printf("field int Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g, \n",
- // GetQext(), GetQsca(), GetQabs(), GetQbk());
-
- std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
- std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
- std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
- std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
- int layer=0; // layer number
- std::complex<double> index_l;
- for (int i = 0; i < size_parameter_.size() - 1; ++i) {
- if (size_parameter_[i] < Rho && Rho <= size_parameter_[i + 1]) {
- layer=i;
- }
- }
- if (Rho > size_parameter_.back()) {
- layer = size_parameter_.size();
- index_l = c_one;
- } else {
- index_l = index_[layer];
- }
-
- std::complex<double> bessel_arg = Rho*index_l;
- std::complex<double>& rh = bessel_arg;
- std::complex<double> besselj_1 = std::sin(rh)/pow2(rh)-std::cos(rh)/rh;
- printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), index_l.real(), index_l.imag(), besselj_1.real(), besselj_1.imag());
- const int& l = layer;
- printf("########## layer %d ############\n",l);
- // Calculate spherical Bessel and Hankel functions
- sphericalBessel(bessel_arg,bj, by, bd);
- printf("besselj[1]=%g,%g\n", bj[1].real(), bj[1].imag());
- printf("bessely[1]=%g,%g\n", by[1].real(), by[1].imag());
- for (int n = 0; n < nmax_; n++) {
- double rn = static_cast<double>(n + 1);
- std::complex<double> znm1 = bj[n] + c_i*by[n];
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
- //if (n<3) printf("\nbesselh = %g,%g", zn.real(), zn.imag()); //!
- // using BH 4.12 and 4.50
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
- //if (n<3) printf("\nxxip = %g,%g", xxip.real(), xxip.imag()); //!
-
- using std::sin;
- using std::cos;
- vm3o1n[0] = c_zero;
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
- // if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
- vm3e1n[0] = c_zero;
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
- // if (n<3) printf("\nRE vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g \nIM vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g",
- // vn3e1n[0].real(), vn3e1n[1].real(), vn3e1n[2].real(),
- // vn3e1n[0].imag(), vn3e1n[1].imag(), vn3e1n[2].imag());
-
- znm1 = bj[n];
- zn = bj[n + 1];
- // znm1 = (bj[n] + c_i*by[n]).real();
- // zn = (bj[n + 1] + c_i*by[n + 1]).real();
- xxip = Rho*(bj[n]) - rn*zn;
- if (n<3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
- vm1o1n[0] = c_zero;
- vm1o1n[1] = cos(Phi)*Pi[n]*zn;
- vm1o1n[2] = -sin(Phi)*Tau[n]*zn;
- vm1e1n[0] = c_zero;
- vm1e1n[1] = -sin(Phi)*Pi[n]*zn;
- vm1e1n[2] = -cos(Phi)*Tau[n]*zn;
- vn1o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
- vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
- // if (n<3) printf("\nvn1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*xxip(%g)/Rho(%g)",
- // std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
- vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
- vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
- vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
- // if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
-
- // scattered field: BH p.94 (4.45)
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
- // if (n<3) printf("\n===== n=%d ======\n",n);
- for (int i = 0; i < 3; i++) {
- // if (n<3 && i==0) printf("\nn=%d",n);
- // if (n<3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
- Ei[i] = encap*(
- cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]
- );
- El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
- Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
- + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
- // printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
- // if (n<3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
- // //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
- // if (n<3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i]
- // //- c_i*cl_n_[l][n]*
- // vn1o1n[i]
- // // + c_i*bl_n_[l][n]*vn3o1n[i]
- // // + al_n_[l][n]*vm3e1n[i]
- // ));
- // if (n<3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
- }
- //if (n<3) printf(" bj=%g \n", std::abs(bj[n]));
- } // end of for all n
-
- // magnetic field
- double hffact = 1.0/(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- Hl[i] = hffact*Hl[i];
- }
-
- for (int i = 0; i < 3; i++) {
- // electric field E [V m - 1] = EF*E0
- E[i] = El[i];
- H[i] = Hl[i];
- printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
- //printf(" E[%d]=%g",i,std::abs(El[i]));
- }
- } // end of void fieldExt(...)
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside (TODO) the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L - 1] //
- // m: Array containing the relative refractive indexes of the layers [0..L - 1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to 0 (zero) and the function will calculate it. //
- // ncoord: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- void MultiLayerMie::RunFieldCalculations() {
- // Calculate scattering coefficients an_ and bn_
- RunMieCalculations();
- //nmax_=10;
- ScattCoeffsLayerd();
- std::vector<double> Pi(nmax_), Tau(nmax_);
- long total_points = coords_sp_[0].size();
- E_field_.resize(total_points);
- H_field_.resize(total_points);
- for (auto& f:E_field_) f.resize(3);
- for (auto& f:H_field_) f.resize(3);
- for (int point = 0; point < total_points; ++point) {
- const double& Xp = coords_sp_[0][point];
- const double& Yp = coords_sp_[1][point];
- const double& Zp = coords_sp_[2][point];
- printf("X=%g, Y=%g, Z=%g\n", Xp, Yp, Zp);
- // Convert to spherical coordinates
- double Rho, Phi, Theta;
- Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
- // printf("Rho=%g\n", Rho);
- // Avoid convergence problems due to Rho too small
- if (Rho < 1e-10) Rho = 1e-10;
- // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
- if (Rho == 0.0) Theta = 0.0;
- else Theta = std::acos(Zp/Rho);
- // printf("Theta=%g\n", Theta);
- // If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems
- if (Xp == 0.0 && Yp == 0.0) Phi = 0.0;
- else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
- // printf("Phi=%g\n", Phi);
- calcSinglePiTau(std::cos(Theta), Pi, Tau);
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // This array contains the fields in spherical coordinates
- std::vector<std::complex<double> > Es(3), Hs(3);
- const double outer_size = size_parameter_.back();
- // Firstly the easiest case: the field outside the particle
- printf("rho=%g, outer=%g ", Rho, outer_size);
- if (Rho >= outer_size) {
- fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
- printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
- } else {
- fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
- printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
- }
- std::complex<double>& Ex = E_field_[point][0];
- std::complex<double>& Ey = E_field_[point][1];
- std::complex<double>& Ez = E_field_[point][2];
- std::complex<double>& Hx = H_field_[point][0];
- std::complex<double>& Hy = H_field_[point][1];
- std::complex<double>& Hz = H_field_[point][2];
- //Now, convert the fields back to cartesian coordinates
- {
- using std::sin;
- using std::cos;
- Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
- Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
- Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
-
- Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
- Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
- Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
- }
- printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
- Rho);
- } // end of for all field coordinates
-
- } // end of void MultiLayerMie::RunFieldCalculations()
- } // end of namespace nmie
|