123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- #ifndef SRC_SPECIAL_FUNCTIONS_IMPL_HPP_
- #define SRC_SPECIAL_FUNCTIONS_IMPL_HPP_
- //******************************************************************************
- // Copyright (C) 2009-2022 Ovidio Pena <ovidio@bytesfall.com>
- // Copyright (C) 2013-2022 Konstantin Ladutenko <kostyfisik@gmail.com>
- //
- // This file is part of scattnlay
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // The only additional remark is that we expect that all publications
- // describing work using this software, or all commercial products
- // using it, cite at least one of the following references:
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- // a multilayered sphere," Computer Physics Communications,
- // vol. 180, Nov. 2009, pp. 2348-2354.
- // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie
- // calculation of electromagnetic near-field for a multilayered
- // sphere," Computer Physics Communications, vol. 214, May 2017,
- // pp. 225-230.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program. If not, see <http://www.gnu.org/licenses/>.
- //******************************************************************************
- //******************************************************************************
- // This class implements the algorithm for a multilayered sphere described by:
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp.
- // 1710-1720.
- //
- // You can find the description of all the used equations in:
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- // a multilayered sphere," Computer Physics Communications,
- // vol. 180, Nov. 2009, pp. 2348-2354.
- // [3] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie
- // calculation of electromagnetic near-field for a multilayered
- // sphere," Computer Physics Communications, vol. 214, May 2017,
- // pp. 225-230.
- //
- // Hereinafter all equations numbers refer to [2]
- //******************************************************************************
- #include <iomanip>
- #include <iostream>
- #include <stdexcept>
- #include <vector>
- #include "nmie-precision.hpp"
- #include "nmie.hpp"
- namespace nmie {
- //******************************************************************************
- // Note, that Kapteyn seems to be too optimistic (at least by 3 digits
- // in some cases) for forward recurrence, see D1test with WYang_data
- //******************************************************************************
- template <typename FloatType>
- int evalKapteynNumberOfLostSignificantDigits(const int ni,
- const std::complex<FloatType> zz) {
- using std::abs;
- using std::imag;
- using std::log;
- using std::real;
- using std::round;
- using std::sqrt;
- std::complex<double> z = ConvertComplex<double>(zz);
- if (abs(z) == 0.)
- return 0;
- auto n = static_cast<double>(ni);
- auto one = std::complex<double>(1, 0);
- auto lost_digits = round( //
- ( //
- abs(imag(z)) - log(2.) -
- n * (real(log(z / n) + sqrt(one - pow2(z / n)) -
- log(one + sqrt(one - pow2(z / n))) //
- ) //
- ) //
- ) /
- log(10.) //
- );
- return lost_digits;
- }
- //******************************************************************************
- template <typename FloatType>
- int getNStar(int nmax, std::complex<FloatType> z, const int valid_digits) {
- if (nmax == 0)
- nmax = 1;
- int nstar = nmax;
- auto z_dp = ConvertComplex<double>(z);
- if (std::abs(z_dp) == 0.)
- return nstar;
- int forwardLoss = evalKapteynNumberOfLostSignificantDigits(nmax, z_dp);
- int increment = static_cast<int>(
- std::ceil(std::max(4 * std::pow(std::abs(z_dp), 1 / 3.0), 5.0)));
- int backwardLoss = evalKapteynNumberOfLostSignificantDigits(nstar, z_dp);
- while (backwardLoss - forwardLoss < valid_digits) {
- nstar += increment;
- backwardLoss = evalKapteynNumberOfLostSignificantDigits(nstar, z_dp);
- };
- return nstar;
- }
- //******************************************************************************
- // Custom implementation of complex cot function to avoid overflow
- // if Im(z) < 0, then it evaluates cot(z) as conj(cot(conj(z)))
- // see Eqs. 10-12 of [1] for details.
- // [1]H. Du, Mie-Scattering Calculation, Appl. Opt. 43, 1951 (2004).
- //******************************************************************************
- template <typename FloatType>
- std::complex<FloatType> complex_cot(const std::complex<FloatType> z) {
- auto Remx = z.real();
- auto Immx = z.imag();
- int sign =
- (Immx > 0) ? 1 : -1; // use complex conj if needed for exp and return
- auto exp = nmm::exp(-2 * sign * Immx);
- auto tan = nmm::tan(Remx);
- auto a = tan - exp * tan;
- auto b = 1 + exp;
- auto c = -1 + exp;
- auto d = tan + exp * tan;
- auto c_one = std::complex<FloatType>(0, 1);
- return (a * c + b * d) / (pow2(c) + pow2(d)) +
- c_one * (sign * (b * c - a * d) / (pow2(c) + pow2(d)));
- }
- //******************************************************************************
- // Forward iteration for evaluation of ratio of the Riccati–Bessel functions
- //******************************************************************************
- template <typename FloatType>
- void evalForwardR(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& r) {
- if (r.size() < 1)
- throw std::invalid_argument(
- "We need non-zero evaluations of ratio of the Riccati–Bessel "
- "functions.\n");
- // r0 = cot(z)
- // r[0] = nmm::cos(z)/nmm::sin(z);
- r[0] = complex_cot(z);
- for (unsigned int n = 0; n < r.size() - 1; n++) {
- r[n + 1] = static_cast<FloatType>(1) /
- ( //
- static_cast<FloatType>(2 * n + 1) / z //
- - r[n] //
- );
- }
- }
- //******************************************************************************
- // Backward iteration for evaluation of ratio of the Riccati–Bessel functions
- //******************************************************************************
- template <typename FloatType>
- void evalBackwardR(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& r) {
- if (r.size() < 1)
- throw std::invalid_argument(
- "We need non-zero evaluations of ratio of the Riccati-Bessel "
- "functions.\n");
- int nmax = r.size() - 1;
- auto tmp = static_cast<FloatType>(2 * nmax + 1) / z;
- r[nmax] = tmp;
- for (int n = nmax - 1; n >= 0; n--) {
- r[n] = -static_cast<FloatType>(1) / r[n + 1] +
- static_cast<FloatType>(2 * n + 1) / z;
- }
- r[0] = complex_cot(z);
- }
- //******************************************************************************
- template <typename FloatType>
- void convertRtoD1(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& r,
- std::vector<std::complex<FloatType>>& D1) {
- if (D1.size() > r.size())
- throw std::invalid_argument(
- "Not enough elements in array of ratio of the Riccati–Bessel functions "
- "to convert it into logarithmic derivative array.\n");
- std::complex<FloatType> D_old;
- for (unsigned int n = 0; n < D1.size(); n++) {
- D_old = D1[n];
- D1[n] = r[n] - static_cast<FloatType>(n) / z;
- // std::cout << "D1old - D1[n] :" << D_old-D1[n] << '\n';
- }
- }
- //******************************************************************************
- template <typename FloatType>
- void evalForwardD(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& D) {
- int nmax = D.size();
- FloatType one = static_cast<FloatType>(1);
- for (int n = 1; n < nmax; n++) {
- FloatType nf = static_cast<FloatType>(n);
- D[n] = one / (nf / z - D[n - 1]) - nf / z;
- }
- }
- //******************************************************************************
- template <typename FloatType>
- void evalForwardD1(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& D) {
- if (D.size() < 1)
- throw std::invalid_argument("Should have a leas one element!\n");
- D[0] = nmm::cos(z) / nmm::sin(z);
- evalForwardD(z, D);
- }
- // template <typename FloatType>
- // void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
- // std::vector<std::complex<FloatType> > &D1,
- // std::vector<std::complex<FloatType> > &D3) {
- //
- // // if (cabs(D1[0]) > 1.0e15) {
- // // throw std::invalid_argument("Unstable D1! Please, try to change input
- // parameters!\n");
- // // //printf("Warning: Potentially unstable D1! Please, try to change input
- // parameters!\n");
- // // }
- //
- // // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- // PsiZeta_[0] = static_cast<FloatType>(0.5)*(static_cast<FloatType>(1.0) -
- // std::complex<FloatType>(nmm::cos(2.0*z.real()), nmm::sin(2.0*z.real()))
- // *static_cast<FloatType>(nmm::exp(-2.0*z.imag())));
- // D3[0] = std::complex<FloatType>(0.0, 1.0);
- //
- // for (int n = 1; n <= nmax_; n++) {
- // PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<FloatType>(n)*z_inv - D1[n -
- // 1])
- // *(static_cast<FloatType>(n)*z_inv - D3[n -
- // 1]);
- // D3[n] = D1[n] + std::complex<FloatType>(0.0, 1.0)/PsiZeta_[n];
- // }
- // }
- //
- //
- //*******************************************************************************
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a
- // complex argument (z).
- // Equations (20a) - (21b)
- //
- // Input parameters:
- // z: Complex argument to evaluate Psi and Zeta
- // nmax: Maximum number of terms to calculate Psi and Zeta
- //
- // Output parameters:
- // Psi, Zeta: Riccati-Bessel functions
- //*******************************************************************************
- // template <typename FloatType>
- // void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
- // std::vector<std::complex<FloatType> > &Psi,
- // std::vector<std::complex<FloatType> > &Zeta)
- // {
- //
- // std::complex<FloatType> c_i(0.0, 1.0);
- // std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1);
- //
- // // First, calculate the logarithmic derivatives
- // calcD1D3(z, D1, D3);
- //
- // // Now, use the upward recurrence to calculate Psi and Zeta - equations
- // (20a) - (21b) Psi[0] = nmm::sin(z); Zeta[0] = nmm::sin(z) -
- // c_i*nmm::cos(z); for (int n = 1; n <= nmax_; n++) {
- // Psi[n] = Psi[n - 1]*(std::complex<FloatType>(n,0.0)/z - D1[n - 1]);
- // Zeta[n] = Zeta[n - 1]*(std::complex<FloatType>(n,0.0)/z - D3[n - 1]);
- // }
- // }
- //**********************************************************************************
- // This function calculates Pi and Tau for a given value of cos(Theta).
- // Equations (26a) - (26c)
- //
- // Input parameters:
- // nmax_: Maximum number of terms to calculate Pi and Tau
- // nTheta: Number of scattering angles
- // Theta: Array containing all the scattering angles where the scattering
- // amplitudes will be calculated
- //
- // Output parameters:
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) -
- // (26c)
- //**********************************************************************************
- // template <typename FloatType>
- // void MultiLayerMie<FloatType>::calcPiTau(const FloatType &costheta,
- // std::vector<FloatType> &Pi,
- // std::vector<FloatType> &Tau) {
- //
- // int i;
- // //****************************************************//
- // // Equations (26a) - (26c) //
- // //****************************************************//
- // // Initialize Pi and Tau
- // Pi[0] = 1.0; // n=1
- // Tau[0] = costheta;
- // // Calculate the actual values
- // if (nmax_ > 1) {
- // Pi[1] = 3*costheta*Pi[0]; //n=2
- // Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
- // for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
- // Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
- // Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
- // }
- // }
- // } // end of MultiLayerMie::calcPiTau(...)
- //**********************************************************************************
- // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),
- // required to calculate the near-field parameters.
- //
- // Input parameters:
- // Rho: Radial distance
- // Phi: Azimuthal angle
- // Theta: Polar angle
- // rn: Either the spherical Ricatti-Bessel function of first or third kind
- // Dn: Logarithmic derivative of rn
- // Pi, Tau: Angular functions Pi and Tau
- // n: Order of vector spherical harmonics
- //
- // Output parameters:
- // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics
- //**********************************************************************************
- // template <typename FloatType>
- // void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<FloatType>
- // Rho, const FloatType Theta, const FloatType Phi,
- // const std::complex<FloatType> &rn, const
- // std::complex<FloatType> &Dn, const
- // FloatType &Pi, const FloatType &Tau, const
- // FloatType &n,
- // std::vector<std::complex<FloatType> >&
- // Mo1n, std::vector<std::complex<FloatType>
- // >& Me1n,
- // std::vector<std::complex<FloatType> >&
- // No1n, std::vector<std::complex<FloatType>
- // >& Ne1n) {
- //
- // // using eq 4.50 in BH
- // std::complex<FloatType> c_zero(0.0, 0.0);
- //
- // using nmm::sin;
- // using nmm::cos;
- // Mo1n[0] = c_zero;
- // Mo1n[1] = cos(Phi)*Pi*rn/Rho;
- // Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
- //
- // Me1n[0] = c_zero;
- // Me1n[1] = -sin(Phi)*Pi*rn/Rho;
- // Me1n[2] = -cos(Phi)*Tau*rn/Rho;
- //
- // No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
- // No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
- // No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
- //
- // Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
- // Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
- // Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
- // } // end of MultiLayerMie::calcSpherHarm(...)
- //
- //******************************************************************************
- // This functions calculate the logarithmic derivatives of the Riccati-Bessel
- // functions (D1 and D3) for a complex argument (z).
- // Equations (16a), (16b) and (18a) - (18d)
- //
- // Input parameters:
- // z: Complex argument to evaluate D1 and D3
- // nmax_: Maximum number of terms to calculate D1 and D3
- //
- // Output parameters:
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions
- //******************************************************************************
- template <typename FloatType>
- void evalDownwardD1(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType>>& D1) {
- int nmax = D1.size() - 1;
- int valid_digits = 16;
- #ifdef MULTI_PRECISION
- valid_digits += MULTI_PRECISION;
- #endif
- int nstar = nmie::getNStar(nmax, z, valid_digits);
- D1.resize(nstar + 1);
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1[nstar] = std::complex<FloatType>(0.0, 0.0);
- std::complex<FloatType> c_one(1.0, 0.0);
- const std::complex<FloatType> z_inv = std::complex<FloatType>(1.0, 0.0) / z;
- for (unsigned int n = nstar; n > 0; n--) {
- D1[n - 1] = static_cast<FloatType>(n) * z_inv -
- c_one / (D1[n] + static_cast<FloatType>(n) * z_inv);
- }
- // Use D1[0] from upward recurrence
- D1[0] = complex_cot(z);
- D1.resize(nmax + 1);
- // printf("D1[0] = (%16.15g, %16.15g) z=(%16.15g,%16.15g)\n",
- // D1[0].real(),D1[0].imag(),
- // z.real(),z.imag());
- }
- //******************************************************************************
- template <typename FloatType>
- void evalUpwardD3(const std::complex<FloatType> z,
- const std::vector<std::complex<FloatType>>& D1,
- std::vector<std::complex<FloatType>>& D3,
- std::vector<std::complex<FloatType>>& PsiZeta) {
- int nmax = D1.size() - 1;
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta[0] = static_cast<FloatType>(0.5) *
- (static_cast<FloatType>(1.0) -
- std::complex<FloatType>(nmm::cos(2.0 * z.real()),
- nmm::sin(2.0 * z.real())) *
- static_cast<FloatType>(nmm::exp(-2.0 * z.imag())));
- D3[0] = std::complex<FloatType>(0.0, 1.0);
- const std::complex<FloatType> z_inv = std::complex<FloatType>(1.0, 0.0) / z;
- for (int n = 1; n <= nmax; n++) {
- PsiZeta[n] = PsiZeta[n - 1] *
- (static_cast<FloatType>(n) * z_inv - D1[n - 1]) *
- (static_cast<FloatType>(n) * z_inv - D3[n - 1]);
- D3[n] = D1[n] + std::complex<FloatType>(0.0, 1.0) / PsiZeta[n];
- }
- }
- //******************************************************************************
- template <typename FloatType>
- std::complex<FloatType> complex_sin(const std::complex<FloatType> z) {
- auto a = z.real();
- auto b = z.imag();
- auto i = std::complex<FloatType>(0, 1);
- using nmm::cos;
- using nmm::exp;
- using nmm::sin;
- return ((cos(a) + i * sin(a)) * exp(-b) - (cos(-a) + i * sin(-a)) * exp(b)) /
- (static_cast<FloatType>(2) * i);
- }
- //******************************************************************************
- template <typename FloatType>
- void evalUpwardPsi(const std::complex<FloatType> z,
- const std::vector<std::complex<FloatType>> D1,
- std::vector<std::complex<FloatType>>& Psi) {
- int nmax = Psi.size() - 1;
- // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a)
- // - (21b)
- Psi[0] = complex_sin(z);
- for (int n = 1; n <= nmax; n++) {
- Psi[n] = Psi[n - 1] * (std::complex<FloatType>(n, 0.0) / z - D1[n - 1]);
- }
- }
- //******************************************************************************
- // Sometimes in literature Zeta is also denoted as Ksi, it is a Riccati-Bessel
- // function of third kind.
- //******************************************************************************
- template <typename FloatType>
- void evalUpwardZeta(const std::complex<FloatType> z,
- const std::vector<std::complex<FloatType>> D3,
- std::vector<std::complex<FloatType>>& Zeta) {
- int nmax = Zeta.size() - 1;
- std::complex<FloatType> c_i(0.0, 1.0);
- // Now, use the upward recurrence to calculate Zeta and Zeta - equations (20a)
- // - (21b)
- Zeta[0] = nmm::sin(z) - c_i * nmm::cos(z);
- for (int n = 1; n <= nmax; n++) {
- Zeta[n] = Zeta[n - 1] * (std::complex<FloatType>(n, 0.0) / z - D3[n - 1]);
- }
- }
- //******************************************************************************
- // void evalForwardRiccatiBessel(const FloatType x, const FloatType first, const
- // FloatType second,
- // std::vector<FloatType> &values) {
- // values[0] = first;
- // values[1] = second;
- // int nmax = values.size();
- // for (int i = 1; i < nmax-1; i++) {
- // values[i+1] = (1 + 2*i) * values[i]/x - values[i-1];
- // }
- // }
- //
- //******************************************************************************
- // void evalChi(const FloatType x, std::vector<FloatType> &Chi) {
- // auto first = nmm::cos(x);
- // auto second = first/x + nmm::sin(x);
- // evalForwardRiccatiBessel(x, first, second, Chi);
- // }
- //
- //******************************************************************************
- // void evalPsi(const FloatType x, std::vector<FloatType> &Psi) {
- // auto first = nmm::sin(x);
- // auto second = first/x - nmm::cos(x);
- // evalForwardRiccatiBessel(x, first, second, Psi);
- // }
- //
- //******************************************************************************
- // void composeZeta(const std::vector<FloatType> &Psi,
- // const std::vector<FloatType> &Chi,
- // std::vector< std::complex<FloatType>> &Zeta) {
- // int nmax = Zeta.size();
- // for (int i = 0; i < nmax; i++) {
- // Zeta[i] = std::complex<FloatType > (Psi[i], Chi[i]);
- // }
- // }
- //******************************************************************************
- template <typename FloatType>
- void evalPsiZetaD1D3(const std::complex<FloatType> cxd,
- std::vector<std::complex<FloatType>>& Psi,
- std::vector<std::complex<FloatType>>& Zeta,
- std::vector<std::complex<FloatType>>& D1,
- std::vector<std::complex<FloatType>>& D3) {
- int nmax = Psi.size() - 1;
- std::vector<std::complex<FloatType>> PsiZeta(nmax + 1);
- for (int n = 0; n <= nmax; n++) {
- D1[n] = std::complex<FloatType>(0.0, -1.0);
- D3[n] = std::complex<FloatType>(0.0, 1.0);
- }
- evalDownwardD1(cxd, D1);
- evalUpwardPsi(cxd, D1, Psi);
- evalUpwardD3(cxd, D1, D3, PsiZeta);
- for (unsigned int i = 0; i < Zeta.size(); i++) {
- Zeta[i] = PsiZeta[i] / Psi[i];
- }
- }
- } // end of namespace nmie
- #endif // SRC_SPECIAL_FUNCTIONS_IMPL_HPP_
|