main.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2019 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. # Copyright (C) 2013-2019 Konstantin Ladutenko <kostyfisik@gmail.com>
  6. #
  7. # This file is part of scattnlay
  8. #
  9. # This program is free software: you can redistribute it and/or modify
  10. # it under the terms of the GNU General Public License as published by
  11. # the Free Software Foundation, either version 3 of the License, or
  12. # (at your option) any later version.
  13. #
  14. # This program is distributed in the hope that it will be useful,
  15. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. # GNU General Public License for more details.
  18. #
  19. # The only additional remark is that we expect that all publications
  20. # describing work using this software, or all commercial products
  21. # using it, cite at least one of the following references:
  22. # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
  23. # a multilayered sphere," Computer Physics Communications,
  24. # vol. 180, Nov. 2009, pp. 2348-2354.
  25. # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
  26. # calculation of electromagnetic near-field for a multilayered
  27. # sphere," Computer Physics Communications, vol. 214, May 2017,
  28. # pp. 225-230.
  29. #
  30. # You should have received a copy of the GNU General Public License
  31. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  32. import numpy as np
  33. def scattcoeffs(x, m, nmax=-1, pl=-1, mp=False):
  34. """
  35. scattcoeffs(x, m[, nmax, pl, mp])
  36. Calculate the scattering coefficients required to calculate both the
  37. near- and far-field parameters.
  38. x: Size parameters (1D or 2D ndarray)
  39. m: Relative refractive indices (1D or 2D ndarray)
  40. nmax: Maximum number of multipolar expansion terms to be used for the
  41. calculations. Only use it if you know what you are doing, otherwise
  42. set this parameter to -1 and the function will calculate it.
  43. pl: Index of PEC layer. If there is none just send -1.
  44. mp: Use multiple (True) or double (False) precision.
  45. Returns: (terms, an, bn)
  46. with
  47. terms: Number of multipolar expansion terms used for the calculations
  48. an, bn: Complex scattering coefficients
  49. """
  50. if mp:
  51. from scattnlay_mp import scattcoeffs as scattcoeffs_
  52. else:
  53. from scattnlay_dp import scattcoeffs as scattcoeffs_
  54. if len(m.shape) != 1 and len(m.shape) != 2:
  55. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  56. if len(x.shape) == 1:
  57. if len(m.shape) == 1:
  58. return scattcoeffs_(x, m, nmax=nmax, pl=pl)
  59. else:
  60. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  61. elif len(x.shape) != 2:
  62. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  63. if nmax == -1:
  64. nstore = 0
  65. else:
  66. nstore = nmax
  67. terms = np.zeros((x.shape[0]), dtype=int)
  68. an = np.zeros((0, nstore), dtype=complex)
  69. bn = np.zeros((0, nstore), dtype=complex)
  70. for i, xi in enumerate(x):
  71. if len(m.shape) == 1:
  72. mi = m
  73. else:
  74. mi = m[i]
  75. terms[i], a, b = scattcoeffs_(xi, mi, nmax=nmax, pl=pl)
  76. if terms[i] > nstore:
  77. nstore = terms[i]
  78. an.resize((an.shape[0], nstore))
  79. bn.resize((bn.shape[0], nstore))
  80. an = np.vstack((an, a))
  81. bn = np.vstack((bn, b))
  82. return terms, an, bn
  83. #scattcoeffs()
  84. def scattnlay(x, m, theta=np.zeros(0, dtype=float), nmax=-1, pl=-1, mp=False):
  85. """
  86. scattnlay(x, m[, theta, nmax, pl, mp])
  87. Calculate the actual scattering parameters and amplitudes.
  88. x: Size parameters (1D or 2D ndarray)
  89. m: Relative refractive indices (1D or 2D ndarray)
  90. theta: Scattering angles where the scattering amplitudes will be
  91. calculated (optional, 1D ndarray)
  92. nmax: Maximum number of multipolar expansion terms to be used for the
  93. calculations. Only use it if you know what you are doing.
  94. pl: Index of PEC layer. If there is none just send -1.
  95. mp: Use multiple (True) or double (False) precision.
  96. Returns: (terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2)
  97. with
  98. terms: Number of multipolar expansion terms used for the calculations
  99. Qext: Efficiency factor for extinction
  100. Qsca: Efficiency factor for scattering
  101. Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)
  102. Qbk: Efficiency factor for backscattering
  103. Qpr: Efficiency factor for the radiation pressure
  104. g: Asymmetry factor (g = (Qext-Qpr)/Qsca)
  105. Albedo: Single scattering albedo (Albedo = Qsca/Qext)
  106. S1, S2: Complex scattering amplitudes
  107. """
  108. if mp:
  109. from scattnlay_mp import scattnlay as scattnlay_
  110. else:
  111. from scattnlay_dp import scattnlay as scattnlay_
  112. if len(m.shape) != 1 and len(m.shape) != 2:
  113. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  114. if len(x.shape) == 1:
  115. if len(m.shape) == 1:
  116. return scattnlay_(x, m, theta, nmax=nmax, pl=pl)
  117. else:
  118. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  119. elif len(x.shape) != 2:
  120. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  121. if len(theta.shape) != 1:
  122. raise ValueError('The scattering angles (theta) should be a 1-D NumPy array.')
  123. terms = np.zeros((x.shape[0]), dtype=int)
  124. Qext = np.zeros((x.shape[0]), dtype=float)
  125. Qsca = np.zeros((x.shape[0]), dtype=float)
  126. Qabs = np.zeros((x.shape[0]), dtype=float)
  127. Qbk = np.zeros((x.shape[0]), dtype=float)
  128. Qpr = np.zeros((x.shape[0]), dtype=float)
  129. g = np.zeros((x.shape[0]), dtype=float)
  130. Albedo = np.zeros((x.shape[0]), dtype=float)
  131. S1 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  132. S2 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  133. for i, xi in enumerate(x):
  134. if len(m.shape) == 1:
  135. mi = m
  136. else:
  137. mi = m[i]
  138. terms[i], Qext[i], Qsca[i], Qabs[i], Qbk[i], Qpr[i], g[i], Albedo[i], S1[i], S2[i] = scattnlay_(xi, mi, theta, nmax=nmax, pl=pl)
  139. return terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2
  140. #scattnlay()
  141. def fieldnlay(x, m, xp, yp, zp, nmax=-1, pl=-1, mp=False):
  142. """
  143. fieldnlay(x, m, xp, yp, zp[, nmax, pl, mp])
  144. Calculate the actual scattering parameters and amplitudes.
  145. x: Size parameters (1D or 2D ndarray)
  146. m: Relative refractive indices (1D or 2D ndarray)
  147. xp: Array containing all X coordinates to calculate the complex
  148. electric and magnetic fields (1D ndarray)
  149. yp: Array containing all Y coordinates to calculate the complex
  150. electric and magnetic fields (1D ndarray)
  151. zp: Array containing all Z coordinates to calculate the complex
  152. electric and magnetic fields (1D ndarray)
  153. nmax: Maximum number of multipolar expansion terms to be used for the
  154. calculations. Only use it if you know what you are doing.
  155. pl: Index of PEC layer. If there is none just send -1.
  156. mp: Use multiple (True) or double (False) precision.
  157. Returns: (terms, E, H)
  158. with
  159. terms: Number of multipolar expansion terms used for the calculations
  160. E, H: Complex electric and magnetic field at the provided coordinates
  161. """
  162. if mp:
  163. from scattnlay_mp import fieldnlay as fieldnlay_
  164. else:
  165. from scattnlay_dp import fieldnlay as fieldnlay_
  166. if len(m.shape) != 1 and len(m.shape) != 2:
  167. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  168. if len(x.shape) == 1:
  169. if len(m.shape) == 1:
  170. return fieldnlay_(x, m, xp, yp, zp, nmax=nmax, pl=pl)
  171. else:
  172. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  173. elif len(x.shape) != 2:
  174. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  175. terms = np.zeros((x.shape[0]), dtype=int)
  176. E = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  177. H = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  178. for i, xi in enumerate(x):
  179. if len(m.shape) == 1:
  180. mi = m
  181. else:
  182. mi = m[i]
  183. terms[i], E[i], H[i] = fieldnlay_(xi, mi, xp, yp, zp, nmax=nmax, pl=pl)
  184. return terms, E, H
  185. #fieldnlay()