nmie.cc 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
  4. // //
  5. // This file is part of scattnlay //
  6. // //
  7. // This program is free software: you can redistribute it and/or modify //
  8. // it under the terms of the GNU General Public License as published by //
  9. // the Free Software Foundation, either version 3 of the License, or //
  10. // (at your option) any later version. //
  11. // //
  12. // This program is distributed in the hope that it will be useful, //
  13. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  14. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  15. // GNU General Public License for more details. //
  16. // //
  17. // The only additional remark is that we expect that all publications //
  18. // describing work using this software, or all commercial products //
  19. // using it, cite the following reference: //
  20. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  21. // a multilayered sphere," Computer Physics Communications, //
  22. // vol. 180, Nov. 2009, pp. 2348-2354. //
  23. // //
  24. // You should have received a copy of the GNU General Public License //
  25. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  26. //**********************************************************************************//
  27. //**********************************************************************************//
  28. // This class implements the algorithm for a multilayered sphere described by: //
  29. // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
  30. // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
  31. // //
  32. // You can find the description of all the used equations in: //
  33. // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  34. // a multilayered sphere," Computer Physics Communications, //
  35. // vol. 180, Nov. 2009, pp. 2348-2354. //
  36. // //
  37. // Hereinafter all equations numbers refer to [2] //
  38. //**********************************************************************************//
  39. #include "bessel.h"
  40. #include "nmie.h"
  41. #include <array>
  42. #include <algorithm>
  43. #include <cstdio>
  44. #include <cstdlib>
  45. #include <stdexcept>
  46. #include <vector>
  47. namespace nmie {
  48. //helpers
  49. template<class T> inline T pow2(const T value) {return value*value;}
  50. int round(double x) {
  51. return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
  52. }
  53. //**********************************************************************************//
  54. // This function emulates a C call to calculate the actual scattering parameters //
  55. // and amplitudes. //
  56. // //
  57. // Input parameters: //
  58. // L: Number of layers //
  59. // pl: Index of PEC layer. If there is none just send -1 //
  60. // x: Array containing the size parameters of the layers [0..L-1] //
  61. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  62. // nTheta: Number of scattering angles //
  63. // Theta: Array containing all the scattering angles where the scattering //
  64. // amplitudes will be calculated //
  65. // nmax: Maximum number of multipolar expansion terms to be used for the //
  66. // calculations. Only use it if you know what you are doing, otherwise //
  67. // set this parameter to -1 and the function will calculate it //
  68. // //
  69. // Output parameters: //
  70. // Qext: Efficiency factor for extinction //
  71. // Qsca: Efficiency factor for scattering //
  72. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  73. // Qbk: Efficiency factor for backscattering //
  74. // Qpr: Efficiency factor for the radiation pressure //
  75. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  76. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  77. // S1, S2: Complex scattering amplitudes //
  78. // //
  79. // Return value: //
  80. // Number of multipolar expansion terms used for the calculations //
  81. //**********************************************************************************//
  82. int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  83. if (x.size() != L || m.size() != L)
  84. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  85. if (Theta.size() != nTheta)
  86. throw std::invalid_argument("Declared number of sample for Theta is not correct!");
  87. try {
  88. MultiLayerMie multi_layer_mie;
  89. multi_layer_mie.SetLayersSize(x);
  90. multi_layer_mie.SetLayersIndex(m);
  91. multi_layer_mie.SetAngles(Theta);
  92. multi_layer_mie.SetPECLayer(pl);
  93. multi_layer_mie.SetMaxTerms(nmax);
  94. multi_layer_mie.RunMieCalculation();
  95. *Qext = multi_layer_mie.GetQext();
  96. *Qsca = multi_layer_mie.GetQsca();
  97. *Qabs = multi_layer_mie.GetQabs();
  98. *Qbk = multi_layer_mie.GetQbk();
  99. *Qpr = multi_layer_mie.GetQpr();
  100. *g = multi_layer_mie.GetAsymmetryFactor();
  101. *Albedo = multi_layer_mie.GetAlbedo();
  102. S1 = multi_layer_mie.GetS1();
  103. S2 = multi_layer_mie.GetS2();
  104. } catch(const std::invalid_argument& ia) {
  105. // Will catch if multi_layer_mie fails or other errors.
  106. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  107. throw std::invalid_argument(ia);
  108. return -1;
  109. }
  110. return 0;
  111. }
  112. //**********************************************************************************//
  113. // This function is just a wrapper to call the full 'nMie' function with fewer //
  114. // parameters, it is here mainly for compatibility with older versions of the //
  115. // program. Also, you can use it if you neither have a PEC layer nor want to define //
  116. // any limit for the maximum number of terms. //
  117. // //
  118. // Input parameters: //
  119. // L: Number of layers //
  120. // x: Array containing the size parameters of the layers [0..L-1] //
  121. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  122. // nTheta: Number of scattering angles //
  123. // Theta: Array containing all the scattering angles where the scattering //
  124. // amplitudes will be calculated //
  125. // //
  126. // Output parameters: //
  127. // Qext: Efficiency factor for extinction //
  128. // Qsca: Efficiency factor for scattering //
  129. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  130. // Qbk: Efficiency factor for backscattering //
  131. // Qpr: Efficiency factor for the radiation pressure //
  132. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  133. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  134. // S1, S2: Complex scattering amplitudes //
  135. // //
  136. // Return value: //
  137. // Number of multipolar expansion terms used for the calculations //
  138. //**********************************************************************************//
  139. int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  140. return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  141. }
  142. //**********************************************************************************//
  143. // This function is just a wrapper to call the full 'nMie' function with fewer //
  144. // parameters, it is useful if you want to include a PEC layer but not a limit //
  145. // for the maximum number of terms. //
  146. // //
  147. // Input parameters: //
  148. // L: Number of layers //
  149. // pl: Index of PEC layer. If there is none just send -1 //
  150. // x: Array containing the size parameters of the layers [0..L-1] //
  151. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  152. // nTheta: Number of scattering angles //
  153. // Theta: Array containing all the scattering angles where the scattering //
  154. // amplitudes will be calculated //
  155. // //
  156. // Output parameters: //
  157. // Qext: Efficiency factor for extinction //
  158. // Qsca: Efficiency factor for scattering //
  159. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  160. // Qbk: Efficiency factor for backscattering //
  161. // Qpr: Efficiency factor for the radiation pressure //
  162. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  163. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  164. // S1, S2: Complex scattering amplitudes //
  165. // //
  166. // Return value: //
  167. // Number of multipolar expansion terms used for the calculations //
  168. //**********************************************************************************//
  169. int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  170. return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  171. }
  172. //**********************************************************************************//
  173. // This function is just a wrapper to call the full 'nMie' function with fewer //
  174. // parameters, it is useful if you want to include a limit for the maximum number //
  175. // of terms but not a PEC layer. //
  176. // //
  177. // Input parameters: //
  178. // L: Number of layers //
  179. // x: Array containing the size parameters of the layers [0..L-1] //
  180. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  181. // nTheta: Number of scattering angles //
  182. // Theta: Array containing all the scattering angles where the scattering //
  183. // amplitudes will be calculated //
  184. // nmax: Maximum number of multipolar expansion terms to be used for the //
  185. // calculations. Only use it if you know what you are doing, otherwise //
  186. // set this parameter to -1 and the function will calculate it //
  187. // //
  188. // Output parameters: //
  189. // Qext: Efficiency factor for extinction //
  190. // Qsca: Efficiency factor for scattering //
  191. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  192. // Qbk: Efficiency factor for backscattering //
  193. // Qpr: Efficiency factor for the radiation pressure //
  194. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  195. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  196. // S1, S2: Complex scattering amplitudes //
  197. // //
  198. // Return value: //
  199. // Number of multipolar expansion terms used for the calculations //
  200. //**********************************************************************************//
  201. int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  202. return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  203. }
  204. //**********************************************************************************//
  205. // This function emulates a C call to calculate complex electric and magnetic field //
  206. // in the surroundings and inside (TODO) the particle. //
  207. // //
  208. // Input parameters: //
  209. // L: Number of layers //
  210. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  211. // x: Array containing the size parameters of the layers [0..L-1] //
  212. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  213. // nmax: Maximum number of multipolar expansion terms to be used for the //
  214. // calculations. Only use it if you know what you are doing, otherwise //
  215. // set this parameter to 0 (zero) and the function will calculate it. //
  216. // ncoord: Number of coordinate points //
  217. // Coords: Array containing all coordinates where the complex electric and //
  218. // magnetic fields will be calculated //
  219. // //
  220. // Output parameters: //
  221. // E, H: Complex electric and magnetic field at the provided coordinates //
  222. // //
  223. // Return value: //
  224. // Number of multipolar expansion terms used for the calculations //
  225. //**********************************************************************************//
  226. int nField(const unsigned int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const unsigned int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
  227. if (x.size() != L || m.size() != L)
  228. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  229. if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
  230. || E.size() != ncoord || H.size() != ncoord)
  231. throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
  232. for (auto f:E)
  233. if (f.size() != 3)
  234. throw std::invalid_argument("Field E is not 3D!");
  235. for (auto f:H)
  236. if (f.size() != 3)
  237. throw std::invalid_argument("Field H is not 3D!");
  238. try {
  239. MultiLayerMie multi_layer_mie;
  240. //multi_layer_mie.SetPECLayer(pl); // TODO add PEC layer to field plotting
  241. multi_layer_mie.SetLayersSize(x);
  242. multi_layer_mie.SetLayersIndex(m);
  243. multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
  244. multi_layer_mie.RunFieldCalculation();
  245. E = multi_layer_mie.GetFieldE();
  246. H = multi_layer_mie.GetFieldH();
  247. } catch(const std::invalid_argument& ia) {
  248. // Will catch if multi_layer_mie fails or other errors.
  249. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  250. throw std::invalid_argument(ia);
  251. return - 1;
  252. }
  253. return 0;
  254. }
  255. // ********************************************************************** //
  256. // Returns previously calculated Qext //
  257. // ********************************************************************** //
  258. double MultiLayerMie::GetQext() {
  259. if (!isMieCalculated_)
  260. throw std::invalid_argument("You should run calculations before result request!");
  261. return Qext_;
  262. }
  263. // ********************************************************************** //
  264. // Returns previously calculated Qabs //
  265. // ********************************************************************** //
  266. double MultiLayerMie::GetQabs() {
  267. if (!isMieCalculated_)
  268. throw std::invalid_argument("You should run calculations before result request!");
  269. return Qabs_;
  270. }
  271. // ********************************************************************** //
  272. // Returns previously calculated Qsca //
  273. // ********************************************************************** //
  274. double MultiLayerMie::GetQsca() {
  275. if (!isMieCalculated_)
  276. throw std::invalid_argument("You should run calculations before result request!");
  277. return Qsca_;
  278. }
  279. // ********************************************************************** //
  280. // Returns previously calculated Qbk //
  281. // ********************************************************************** //
  282. double MultiLayerMie::GetQbk() {
  283. if (!isMieCalculated_)
  284. throw std::invalid_argument("You should run calculations before result request!");
  285. return Qbk_;
  286. }
  287. // ********************************************************************** //
  288. // Returns previously calculated Qpr //
  289. // ********************************************************************** //
  290. double MultiLayerMie::GetQpr() {
  291. if (!isMieCalculated_)
  292. throw std::invalid_argument("You should run calculations before result request!");
  293. return Qpr_;
  294. }
  295. // ********************************************************************** //
  296. // Returns previously calculated assymetry factor //
  297. // ********************************************************************** //
  298. double MultiLayerMie::GetAsymmetryFactor() {
  299. if (!isMieCalculated_)
  300. throw std::invalid_argument("You should run calculations before result request!");
  301. return asymmetry_factor_;
  302. }
  303. // ********************************************************************** //
  304. // Returns previously calculated Albedo //
  305. // ********************************************************************** //
  306. double MultiLayerMie::GetAlbedo() {
  307. if (!isMieCalculated_)
  308. throw std::invalid_argument("You should run calculations before result request!");
  309. return albedo_;
  310. }
  311. // ********************************************************************** //
  312. // Returns previously calculated S1 //
  313. // ********************************************************************** //
  314. std::vector<std::complex<double> > MultiLayerMie::GetS1() {
  315. if (!isMieCalculated_)
  316. throw std::invalid_argument("You should run calculations before result request!");
  317. return S1_;
  318. }
  319. // ********************************************************************** //
  320. // Returns previously calculated S2 //
  321. // ********************************************************************** //
  322. std::vector<std::complex<double> > MultiLayerMie::GetS2() {
  323. if (!isMieCalculated_)
  324. throw std::invalid_argument("You should run calculations before result request!");
  325. return S2_;
  326. }
  327. // ********************************************************************** //
  328. // Modify scattering (theta) angles //
  329. // ********************************************************************** //
  330. void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
  331. isExpCoeffsCalc_ = false;
  332. isScaCoeffsCalc_ = false;
  333. isMieCalculated_ = false;
  334. theta_ = angles;
  335. }
  336. // ********************************************************************** //
  337. // Modify size of all layers //
  338. // ********************************************************************** //
  339. void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
  340. isExpCoeffsCalc_ = false;
  341. isScaCoeffsCalc_ = false;
  342. isMieCalculated_ = false;
  343. size_param_.clear();
  344. double prev_layer_size = 0.0;
  345. for (auto curr_layer_size : layer_size) {
  346. if (curr_layer_size <= 0.0)
  347. throw std::invalid_argument("Size parameter should be positive!");
  348. if (prev_layer_size > curr_layer_size)
  349. throw std::invalid_argument
  350. ("Size parameter for next layer should be larger than the previous one!");
  351. prev_layer_size = curr_layer_size;
  352. size_param_.push_back(curr_layer_size);
  353. }
  354. }
  355. // ********************************************************************** //
  356. // Modify refractive index of all layers //
  357. // ********************************************************************** //
  358. void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
  359. isExpCoeffsCalc_ = false;
  360. isScaCoeffsCalc_ = false;
  361. isMieCalculated_ = false;
  362. refractive_index_ = index;
  363. }
  364. // ********************************************************************** //
  365. // Modify coordinates for field calculation //
  366. // ********************************************************************** //
  367. void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
  368. if (coords.size() != 3)
  369. throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
  370. if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
  371. throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
  372. coords_ = coords;
  373. }
  374. // ********************************************************************** //
  375. // ********************************************************************** //
  376. // ********************************************************************** //
  377. void MultiLayerMie::SetPECLayer(int layer_position) {
  378. isExpCoeffsCalc_ = false;
  379. isScaCoeffsCalc_ = false;
  380. isMieCalculated_ = false;
  381. if (layer_position < 0 && layer_position != -1)
  382. throw std::invalid_argument("Error! Layers are numbered from 0!");
  383. PEC_layer_position_ = layer_position;
  384. }
  385. // ********************************************************************** //
  386. // Set maximun number of terms to be used //
  387. // ********************************************************************** //
  388. void MultiLayerMie::SetMaxTerms(int nmax) {
  389. isExpCoeffsCalc_ = false;
  390. isScaCoeffsCalc_ = false;
  391. isMieCalculated_ = false;
  392. nmax_preset_ = nmax;
  393. }
  394. // ********************************************************************** //
  395. // ********************************************************************** //
  396. // ********************************************************************** //
  397. double MultiLayerMie::GetSizeParameter() {
  398. if (size_param_.size() > 0)
  399. return size_param_.back();
  400. else
  401. return 0;
  402. }
  403. // ********************************************************************** //
  404. // Clear layer information //
  405. // ********************************************************************** //
  406. void MultiLayerMie::ClearLayers() {
  407. isExpCoeffsCalc_ = false;
  408. isScaCoeffsCalc_ = false;
  409. isMieCalculated_ = false;
  410. size_param_.clear();
  411. refractive_index_.clear();
  412. }
  413. // ********************************************************************** //
  414. // ********************************************************************** //
  415. // ********************************************************************** //
  416. // Computational core
  417. // ********************************************************************** //
  418. // ********************************************************************** //
  419. // ********************************************************************** //
  420. // ********************************************************************** //
  421. // Calculate calcNstop - equation (17) //
  422. // ********************************************************************** //
  423. void MultiLayerMie::calcNstop() {
  424. const double& xL = size_param_.back();
  425. if (xL <= 8) {
  426. nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
  427. } else if (xL <= 4200) {
  428. nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
  429. } else {
  430. nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
  431. }
  432. }
  433. // ********************************************************************** //
  434. // Maximum number of terms required for the calculation //
  435. // ********************************************************************** //
  436. void MultiLayerMie::calcNmax(unsigned int first_layer) {
  437. int ri, riM1;
  438. const std::vector<double>& x = size_param_;
  439. const std::vector<std::complex<double> >& m = refractive_index_;
  440. calcNstop(); // Set initial nmax_ value
  441. for (unsigned int i = first_layer; i < x.size(); i++) {
  442. if (static_cast<int>(i) > PEC_layer_position_) // static_cast used to avoid warning
  443. ri = round(std::abs(x[i]*m[i]));
  444. else
  445. ri = 0;
  446. nmax_ = std::max(nmax_, ri);
  447. // first layer is pec, if pec is present
  448. if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
  449. riM1 = round(std::abs(x[i - 1]* m[i]));
  450. else
  451. riM1 = 0;
  452. nmax_ = std::max(nmax_, riM1);
  453. }
  454. nmax_ += 15; // Final nmax_ value
  455. }
  456. // ********************************************************************** //
  457. // Calculate an - equation (5) //
  458. // ********************************************************************** //
  459. std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
  460. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  461. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  462. std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
  463. std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
  464. return Num/Denom;
  465. }
  466. // ********************************************************************** //
  467. // Calculate bn - equation (6) //
  468. // ********************************************************************** //
  469. std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
  470. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  471. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  472. std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
  473. std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
  474. return Num/Denom;
  475. }
  476. // ********************************************************************** //
  477. // Calculate an and bn for bulk sphere size x and index m //
  478. // equation (4.56) and (4.57) BH //
  479. // ********************************************************************** //
  480. void MultiLayerMie::calc_an_bn_bulk(std::vector<std::complex<double> >& an,
  481. std::vector<std::complex<double> >& bn,
  482. double x, std::complex<double> m) {
  483. //printf("==========\n m = %g,%g, x= %g\n", std::real(m), std::imag(m), x);
  484. std::vector<std::complex<double> > PsiX(nmax_ + 1), ZetaX(nmax_ + 1);
  485. std::vector<std::complex<double> > PsiMX(nmax_ + 1), ZetaMX(nmax_ + 1);
  486. // First, calculate the Riccati-Bessel functions
  487. calcPsiZeta(x, PsiX, ZetaX);
  488. calcPsiZeta(m*x, PsiMX, ZetaMX);
  489. std::vector<std::complex<double> > D1X(nmax_ + 1), D3X(nmax_ + 1);
  490. std::vector<std::complex<double> > D1MX(nmax_ + 1), D3MX(nmax_ + 1);
  491. // Calculate the logarithmic derivatives
  492. calcD1D3(x, D1X, D3X);
  493. calcD1D3(m*x, D1MX, D3MX);
  494. std::vector<std::complex<double> > dPsiX(nmax_ + 1), dZetaX(nmax_ + 1);
  495. std::vector<std::complex<double> > dPsiMX(nmax_ + 1);
  496. for (int i = 0; i < nmax_ + 1; ++i) {
  497. dPsiX[i] = D1X[i]*PsiX[i];
  498. dPsiMX[i] = D1MX[i]*PsiMX[i];
  499. //dZetaX[i] = D3X[i]*ZetaX[i];
  500. }
  501. bessel::calcZeta(nmax_, x, ZetaX, dZetaX);
  502. an.resize(nmax_);
  503. bn.resize(nmax_);
  504. for (int i = 0; i < nmax_; i++) {
  505. int n = i+1;
  506. std::complex<double> Num = m*PsiMX[n]*dPsiX[n] - PsiX[n]*dPsiMX[n];
  507. std::complex<double> Denom = m*PsiMX[n]*dZetaX[n] - ZetaX[n]*dPsiMX[n];
  508. an[i] = Num/Denom;
  509. Num = PsiMX[n]*dPsiX[n] - m*PsiX[n]*dPsiMX[n];
  510. Denom = PsiMX[n]*dZetaX[n] - m*ZetaX[n]*dPsiMX[n];
  511. bn[i] = Num/Denom;
  512. }
  513. // printf("dPsiX\n");
  514. // for (auto a: dPsiX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  515. // printf("\ndPsiMX\n");
  516. // for (auto a: dPsiMX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  517. // printf("\nPsiX\n");
  518. // for (auto a: PsiX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  519. // printf("\nPsiMX\n");
  520. // for (auto a: PsiMX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  521. // printf("\nZetaX\n");
  522. // for (auto a: ZetaX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  523. // printf("\ndZetaX\n");
  524. // for (auto a: dZetaX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a));
  525. // printf("\nsize param: %g\n", x);
  526. }
  527. // ********************************************************************** //
  528. // Calculates S1 - equation (25a) //
  529. // ********************************************************************** //
  530. std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
  531. double Pi, double Tau) {
  532. return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
  533. }
  534. // ********************************************************************** //
  535. // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
  536. // Pi and Tau) //
  537. // ********************************************************************** //
  538. std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
  539. double Pi, double Tau) {
  540. return calc_S1(n, an, bn, Tau, Pi);
  541. }
  542. //**********************************************************************************//
  543. // This function calculates the logarithmic derivatives of the Riccati-Bessel //
  544. // functions (D1 and D3) for a complex argument (z). //
  545. // Equations (16a), (16b) and (18a) - (18d) //
  546. // //
  547. // Input parameters: //
  548. // z: Complex argument to evaluate D1 and D3 //
  549. // nmax_: Maximum number of terms to calculate D1 and D3 //
  550. // //
  551. // Output parameters: //
  552. // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
  553. //**********************************************************************************//
  554. void MultiLayerMie::calcD1D3(const std::complex<double> z,
  555. std::vector<std::complex<double> >& D1,
  556. std::vector<std::complex<double> >& D3) {
  557. // Downward recurrence for D1 - equations (16a) and (16b)
  558. D1[nmax_] = std::complex<double>(0.0, 0.0);
  559. const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
  560. for (int n = nmax_; n > 0; n--) {
  561. D1[n - 1] = static_cast<double>(n)*zinv - 1.0/(D1[n] + static_cast<double>(n)*zinv);
  562. }
  563. if (std::abs(D1[0]) > 100000.0)
  564. throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
  565. // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  566. PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
  567. *std::exp(-2.0*z.imag()));
  568. D3[0] = std::complex<double>(0.0, 1.0);
  569. for (int n = 1; n <= nmax_; n++) {
  570. PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
  571. *(static_cast<double>(n)*zinv - D3[n - 1]);
  572. D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
  573. }
  574. }
  575. //**********************************************************************************//
  576. // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
  577. // complex argument (z). //
  578. // Equations (20a) - (21b) //
  579. // //
  580. // Input parameters: //
  581. // z: Complex argument to evaluate Psi and Zeta //
  582. // nmax: Maximum number of terms to calculate Psi and Zeta //
  583. // //
  584. // Output parameters: //
  585. // Psi, Zeta: Riccati-Bessel functions //
  586. //**********************************************************************************//
  587. void MultiLayerMie::calcPsiZeta(std::complex<double> z,
  588. std::vector<std::complex<double> >& Psi,
  589. std::vector<std::complex<double> >& Zeta) {
  590. std::complex<double> c_i(0.0, 1.0);
  591. std::vector<std::complex<double> > D1(nmax_ + 1), D3(nmax_ + 1);
  592. // First, calculate the logarithmic derivatives
  593. calcD1D3(z, D1, D3);
  594. // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
  595. Psi[0] = std::sin(z);
  596. Zeta[0] = std::sin(z) - c_i*std::cos(z);
  597. for (int n = 1; n <= nmax_; n++) {
  598. Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
  599. Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
  600. }
  601. }
  602. //**********************************************************************************//
  603. // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
  604. // and their derivatives for a given complex value z. See pag. 87 B&H. //
  605. // //
  606. // Input parameters: //
  607. // z: Complex argument to evaluate jn and h1n //
  608. // nmax_: Maximum number of terms to calculate jn and h1n //
  609. // //
  610. // Output parameters: //
  611. // jn, h1n: Spherical Bessel and Hankel functions //
  612. // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
  613. // //
  614. // What we actually calculate are the Ricatti-Bessel fucntions and then simply //
  615. // evaluate the spherical Bessel and Hankel functions and their derivatives //
  616. // using the relations: //
  617. // //
  618. // j[n] = Psi[n]/z //
  619. // j'[n] = j[n-1]-(n+1)*jn[n])/z //
  620. // h1[n] = Zeta[n]/z //
  621. // h1'[n] = h1[n-1]-(n+1)*h1n[n]/z //
  622. // //
  623. //**********************************************************************************//
  624. void MultiLayerMie::sbesjh(std::complex<double> z,
  625. std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp,
  626. std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
  627. // std::vector<std::complex<double> > Psi(nmax_ + 1), Zeta(nmax_ + 1);
  628. // // First, calculate the Riccati-Bessel functions
  629. // calcPsiZeta(z, Psi, Zeta);
  630. // // Now, calculate Spherical Bessel and Hankel functions and their derivatives
  631. // for (int n = 0; n <= nmax_; n++) {
  632. // jn[n] = Psi[n]/z;
  633. // h1n[n] = Zeta[n]/z;
  634. // if (n == 0) {
  635. // jnp[0] = -Psi[1]/z - jn[0]/z;
  636. // h1np[0] = -Zeta[1]/z - h1n[0]/z;
  637. // } else {
  638. // jnp[n] = jn[n - 1] - static_cast<double>(n + 1)*jn[n]/z;
  639. // h1np[n] = h1n[n - 1] - static_cast<double>(n + 1)*h1n[n]/z;
  640. // }
  641. // }
  642. std::vector< std::complex<double> > yn, ynp;
  643. int nm;
  644. bessel::csphjy (nmax_, z, nm, jn, jnp, yn, ynp );
  645. auto c_i = std::complex<double>(0.0,1.0);
  646. h1n.resize(nmax_+1);
  647. h1np.resize(nmax_+1);
  648. for (int i = 0; i < nmax_+1; ++i) {
  649. h1n[i] = jn[i] + c_i*yn[i];
  650. h1np[i] = jnp[i] + c_i*ynp[i];
  651. }
  652. }
  653. //**********************************************************************************//
  654. // This function calculates Pi and Tau for a given value of cos(Theta). //
  655. // Equations (26a) - (26c) //
  656. // //
  657. // Input parameters: //
  658. // nmax_: Maximum number of terms to calculate Pi and Tau //
  659. // nTheta: Number of scattering angles //
  660. // Theta: Array containing all the scattering angles where the scattering //
  661. // amplitudes will be calculated //
  662. // //
  663. // Output parameters: //
  664. // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
  665. //**********************************************************************************//
  666. void MultiLayerMie::calcPiTau(const double& costheta,
  667. std::vector<double>& Pi, std::vector<double>& Tau) {
  668. int i;
  669. //****************************************************//
  670. // Equations (26a) - (26c) //
  671. //****************************************************//
  672. // Initialize Pi and Tau
  673. Pi[0] = 1.0; // n=1
  674. Tau[0] = costheta;
  675. // Calculate the actual values
  676. if (nmax_ > 1) {
  677. Pi[1] = 3*costheta*Pi[0]; //n=2
  678. Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
  679. for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
  680. Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
  681. Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
  682. }
  683. }
  684. } // end of MultiLayerMie::calcPiTau(...)
  685. //**********************************************************************************//
  686. // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), //
  687. // required to calculate the near-field parameters. //
  688. // //
  689. // Input parameters: //
  690. // Rho: Radial distance //
  691. // Phi: Azimuthal angle //
  692. // Theta: Polar angle //
  693. // rn: Either the spherical Ricatti-Bessel function of first or third kind //
  694. // Dn: Logarithmic derivative of rn //
  695. // Pi, Tau: Angular functions Pi and Tau //
  696. // n: Order of vector spherical harmonics //
  697. // //
  698. // Output parameters: //
  699. // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics //
  700. //**********************************************************************************//
  701. void MultiLayerMie::calcSpherHarm(const double Rho, const double Theta, const double Phi,
  702. const std::complex<double>& rn, const std::complex<double>& Dn,
  703. const double& Pi, const double& Tau, const double& n,
  704. std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n,
  705. std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
  706. // using eq 4.50 in BH
  707. std::complex<double> c_zero(0.0, 0.0);
  708. using std::sin;
  709. using std::cos;
  710. Mo1n[0] = c_zero;
  711. Mo1n[1] = cos(Phi)*Pi*rn/Rho;
  712. Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
  713. Me1n[0] = c_zero;
  714. Me1n[1] = -sin(Phi)*Pi*rn/Rho;
  715. Me1n[2] = -cos(Phi)*Tau*rn/Rho;
  716. No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
  717. No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
  718. No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
  719. Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
  720. Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
  721. Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
  722. } // end of MultiLayerMie::calcSpherHarm(...)
  723. //**********************************************************************************//
  724. // This function calculates the scattering coefficients required to calculate //
  725. // both the near- and far-field parameters. //
  726. // //
  727. // Input parameters: //
  728. // L: Number of layers //
  729. // pl: Index of PEC layer. If there is none just send -1 //
  730. // x: Array containing the size parameters of the layers [0..L-1] //
  731. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  732. // nmax: Maximum number of multipolar expansion terms to be used for the //
  733. // calculations. Only use it if you know what you are doing, otherwise //
  734. // set this parameter to -1 and the function will calculate it. //
  735. // //
  736. // Output parameters: //
  737. // an, bn: Complex scattering amplitudes //
  738. // //
  739. // Return value: //
  740. // Number of multipolar expansion terms used for the calculations //
  741. //**********************************************************************************//
  742. void MultiLayerMie::ScattCoeffs() {
  743. isScaCoeffsCalc_ = false;
  744. const std::vector<double>& x = size_param_;
  745. const std::vector<std::complex<double> >& m = refractive_index_;
  746. const int& pl = PEC_layer_position_;
  747. const int L = refractive_index_.size();
  748. //************************************************************************//
  749. // Calculate the index of the first layer. It can be either 0 (default) //
  750. // or the index of the outermost PEC layer. In the latter case all layers //
  751. // below the PEC are discarded. //
  752. // ***********************************************************************//
  753. int fl = (pl > 0) ? pl : 0;
  754. if (nmax_preset_ <= 0) calcNmax(fl);
  755. else nmax_ = nmax_preset_;
  756. std::complex<double> z1, z2;
  757. //**************************************************************************//
  758. // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
  759. // means that index = layer number - 1 or index = n - 1. The only exception //
  760. // are the arrays for representing D1, D3 and Q because they need a value //
  761. // for the index 0 (zero), hence it is important to consider this shift //
  762. // between different arrays. The change was done to optimize memory usage. //
  763. //**************************************************************************//
  764. // Allocate memory to the arrays
  765. std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
  766. D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
  767. std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
  768. for (int l = 0; l < L; l++) {
  769. Q[l].resize(nmax_ + 1);
  770. Ha[l].resize(nmax_);
  771. Hb[l].resize(nmax_);
  772. }
  773. an_.resize(nmax_);
  774. bn_.resize(nmax_);
  775. PsiZeta_.resize(nmax_ + 1);
  776. std::vector<std::complex<double> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
  777. //*************************************************//
  778. // Calculate D1 and D3 for z1 in the first layer //
  779. //*************************************************//
  780. if (fl == pl) { // PEC layer
  781. for (int n = 0; n <= nmax_; n++) {
  782. D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
  783. D3_mlxl[n] = std::complex<double>(0.0, 1.0);
  784. }
  785. } else { // Regular layer
  786. z1 = x[fl]* m[fl];
  787. // Calculate D1 and D3
  788. calcD1D3(z1, D1_mlxl, D3_mlxl);
  789. }
  790. //******************************************************************//
  791. // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
  792. //******************************************************************//
  793. for (int n = 0; n < nmax_; n++) {
  794. Ha[fl][n] = D1_mlxl[n + 1];
  795. Hb[fl][n] = D1_mlxl[n + 1];
  796. }
  797. //*****************************************************//
  798. // Iteration from the second layer to the last one (L) //
  799. //*****************************************************//
  800. std::complex<double> Temp, Num, Denom;
  801. std::complex<double> G1, G2;
  802. for (int l = fl + 1; l < L; l++) {
  803. //************************************************************//
  804. //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
  805. //************************************************************//
  806. z1 = x[l]*m[l];
  807. z2 = x[l - 1]*m[l];
  808. //Calculate D1 and D3 for z1
  809. calcD1D3(z1, D1_mlxl, D3_mlxl);
  810. //Calculate D1 and D3 for z2
  811. calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
  812. //*************************************************//
  813. //Calculate Q, Ha and Hb in the layers fl + 1..L //
  814. //*************************************************//
  815. // Upward recurrence for Q - equations (19a) and (19b)
  816. Num = std::exp(-2.0*(z1.imag() - z2.imag()))
  817. *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
  818. Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
  819. Q[l][0] = Num/Denom;
  820. for (int n = 1; n <= nmax_; n++) {
  821. Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
  822. Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
  823. Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
  824. }
  825. // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
  826. for (int n = 1; n <= nmax_; n++) {
  827. //Ha
  828. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  829. G1 = -D1_mlxlM1[n];
  830. G2 = -D3_mlxlM1[n];
  831. } else {
  832. G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
  833. G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
  834. } // end of if PEC
  835. Temp = Q[l][n]*G1;
  836. Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
  837. Denom = G2 - Temp;
  838. Ha[l][n - 1] = Num/Denom;
  839. //Hb
  840. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  841. G1 = Hb[l - 1][n - 1];
  842. G2 = Hb[l - 1][n - 1];
  843. } else {
  844. G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
  845. G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
  846. } // end of if PEC
  847. Temp = Q[l][n]*G1;
  848. Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
  849. Denom = (G2- Temp);
  850. Hb[l][n - 1] = (Num/ Denom);
  851. } // end of for Ha and Hb terms
  852. } // end of for layers iteration
  853. //**************************************//
  854. //Calculate Psi and Zeta for XL //
  855. //**************************************//
  856. // Calculate PsiXL and ZetaXL
  857. calcPsiZeta(x[L - 1], PsiXL, ZetaXL);
  858. //*********************************************************************//
  859. // Finally, we calculate the scattering coefficients (an and bn) and //
  860. // the angular functions (Pi and Tau). Note that for these arrays the //
  861. // first layer is 0 (zero), in future versions all arrays will follow //
  862. // this convention to save memory. (13 Nov, 2014) //
  863. //*********************************************************************//
  864. for (int n = 0; n < nmax_; n++) {
  865. //********************************************************************//
  866. //Expressions for calculating an and bn coefficients are not valid if //
  867. //there is only one PEC layer (ie, for a simple PEC sphere). //
  868. //********************************************************************//
  869. if (pl < (L - 1)) {
  870. an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  871. bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  872. } else {
  873. an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  874. bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
  875. }
  876. } // end of for an and bn terms
  877. isScaCoeffsCalc_ = true;
  878. } // end of MultiLayerMie::ScattCoeffs(...)
  879. //**********************************************************************************//
  880. // This function calculates the actual scattering parameters and amplitudes //
  881. // //
  882. // Input parameters: //
  883. // L: Number of layers //
  884. // pl: Index of PEC layer. If there is none just send -1 //
  885. // x: Array containing the size parameters of the layers [0..L-1] //
  886. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  887. // nTheta: Number of scattering angles //
  888. // Theta: Array containing all the scattering angles where the scattering //
  889. // amplitudes will be calculated //
  890. // nmax_: Maximum number of multipolar expansion terms to be used for the //
  891. // calculations. Only use it if you know what you are doing, otherwise //
  892. // set this parameter to -1 and the function will calculate it //
  893. // //
  894. // Output parameters: //
  895. // Qext: Efficiency factor for extinction //
  896. // Qsca: Efficiency factor for scattering //
  897. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  898. // Qbk: Efficiency factor for backscattering //
  899. // Qpr: Efficiency factor for the radiation pressure //
  900. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  901. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  902. // S1, S2: Complex scattering amplitudes //
  903. // //
  904. // Return value: //
  905. // Number of multipolar expansion terms used for the calculations //
  906. //**********************************************************************************//
  907. void MultiLayerMie::RunMieCalculation() {
  908. if (size_param_.size() != refractive_index_.size())
  909. throw std::invalid_argument("Each size parameter should have only one index!");
  910. if (size_param_.size() == 0)
  911. throw std::invalid_argument("Initialize model first!");
  912. const std::vector<double>& x = size_param_;
  913. isExpCoeffsCalc_ = false;
  914. isScaCoeffsCalc_ = false;
  915. isMieCalculated_ = false;
  916. // Calculate scattering coefficients
  917. ScattCoeffs();
  918. if (!isScaCoeffsCalc_) // TODO seems to be unreachable
  919. throw std::invalid_argument("Calculation of scattering coefficients failed!");
  920. // Initialize the scattering parameters
  921. Qext_ = 0.0;
  922. Qsca_ = 0.0;
  923. Qabs_ = 0.0;
  924. Qbk_ = 0.0;
  925. Qpr_ = 0.0;
  926. asymmetry_factor_ = 0.0;
  927. albedo_ = 0.0;
  928. // Initialize the scattering amplitudes
  929. std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
  930. S1_.swap(tmp1);
  931. S2_ = S1_;
  932. std::vector<double> Pi(nmax_), Tau(nmax_);
  933. std::complex<double> Qbktmp(0.0, 0.0);
  934. std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
  935. // By using downward recurrence we avoid loss of precision due to float rounding errors
  936. // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
  937. // http://en.wikipedia.org/wiki/Loss_of_significance
  938. for (int i = nmax_ - 2; i >= 0; i--) {
  939. const int n = i + 1;
  940. // Equation (27)
  941. Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
  942. // Equation (28)
  943. Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
  944. + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
  945. // Equation (29)
  946. Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
  947. + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
  948. // Equation (33)
  949. Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
  950. // Calculate the scattering amplitudes (S1 and S2) //
  951. // Equations (25a) - (25b) //
  952. for (unsigned int t = 0; t < theta_.size(); t++) {
  953. calcPiTau(std::cos(theta_[t]), Pi, Tau);
  954. S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
  955. S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
  956. }
  957. }
  958. double x2 = pow2(x.back());
  959. Qext_ = 2.0*(Qext_)/x2; // Equation (27)
  960. Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
  961. Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
  962. Qabs_ = Qext_ - Qsca_; // Equation (30)
  963. albedo_ = Qsca_/Qext_; // Equation (31)
  964. asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
  965. Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
  966. isMieCalculated_ = true;
  967. }
  968. //**********************************************************************************//
  969. // This function calculates the expansion coefficients inside the particle, //
  970. // required to calculate the near-field parameters. //
  971. // //
  972. // Input parameters: //
  973. // L: Number of layers //
  974. // pl: Index of PEC layer. If there is none just send -1 //
  975. // x: Array containing the size parameters of the layers [0..L-1] //
  976. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  977. // nmax: Maximum number of multipolar expansion terms to be used for the //
  978. // calculations. Only use it if you know what you are doing, otherwise //
  979. // set this parameter to -1 and the function will calculate it. //
  980. // //
  981. // Output parameters: //
  982. // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
  983. // //
  984. // Return value: //
  985. // Number of multipolar expansion terms used for the calculations //
  986. //**********************************************************************************//
  987. void MultiLayerMie::ExpanCoeffs() {
  988. if (!isScaCoeffsCalc_)
  989. throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!");
  990. isExpCoeffsCalc_ = false;
  991. std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);
  992. const int L = refractive_index_.size();
  993. aln_.resize(L + 1);
  994. bln_.resize(L + 1);
  995. cln_.resize(L + 1);
  996. dln_.resize(L + 1);
  997. for (int l = 0; l <= L; l++) {
  998. aln_[l].resize(nmax_);
  999. bln_[l].resize(nmax_);
  1000. cln_[l].resize(nmax_);
  1001. dln_[l].resize(nmax_);
  1002. }
  1003. // Yang, paragraph under eq. A3
  1004. // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
  1005. for (int n = 0; n < nmax_; n++) {
  1006. aln_[L][n] = an_[n];
  1007. bln_[L][n] = bn_[n];
  1008. cln_[L][n] = c_one;
  1009. dln_[L][n] = c_one;
  1010. printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", L, n, std::real(aln_[L][n]), std::imag(aln_[L][n]), L, n, std::real(bln_[L][n]), std::imag(bln_[L][n]), L, n, std::real(cln_[L][n]), std::imag(cln_[L][n]), L, n, std::real(dln_[L][n]), std::imag(dln_[L][n]));
  1011. }
  1012. std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
  1013. std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
  1014. std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;
  1015. auto& m = refractive_index_;
  1016. std::vector< std::complex<double> > m1(L);
  1017. for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
  1018. m1[L - 1] = std::complex<double> (1.0, 0.0);
  1019. std::complex<double> z, z1;
  1020. for (int l = L - 1; l >= 0; l--) {
  1021. z = size_param_[l]*m[l];
  1022. z1 = size_param_[l]*m1[l];
  1023. calcD1D3(z, D1z, D3z);
  1024. calcD1D3(z1, D1z1, D3z1);
  1025. calcPsiZeta(z, Psiz, Zetaz);
  1026. calcPsiZeta(z1, Psiz1, Zetaz1);
  1027. for (int n = 0; n < nmax_; n++) {
  1028. int n1 = n + 1;
  1029. denomZeta = m1[l]*Zetaz[n1]*(D1z[n1] - D3z[n1]);
  1030. denomPsi = m1[l]*Psiz[n1]*(D1z[n1] - D3z[n1]);
  1031. T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
  1032. T2 = bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1];
  1033. T3 = D1z1[n1]*dln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*aln_[l + 1][n]*Zetaz1[n1];
  1034. T4 = D1z1[n1]*cln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*bln_[l + 1][n]*Zetaz1[n1];
  1035. // aln
  1036. aln_[l][n] = (D1z[n1]*m1[l]*T1 + m[l]*T3)/denomZeta;
  1037. // bln
  1038. bln_[l][n] = (D1z[n1]*m[l]*T2 + m1[l]*T4)/denomZeta;
  1039. // cln
  1040. cln_[l][n] = (D3z[n1]*m[l]*T2 + m1[l]*T4)/denomPsi;
  1041. // dln
  1042. dln_[l][n] = (D3z[n1]*m1[l]*T1 + m[l]*T3)/denomPsi;
  1043. printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", l, n, real(aln_[l][n]), imag(aln_[l][n]), l, n, real(bln_[l][n]), imag(bln_[l][n]), l, n, real(cln_[l][n]), imag(cln_[l][n]), l, n, real(dln_[l][n]), imag(dln_[l][n]));
  1044. } // end of all n
  1045. } // end of all l
  1046. // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
  1047. for (int n = 0; n < nmax_; ++n) {
  1048. // printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]),
  1049. // real(bln_[0][n]), imag(bln_[0][n]));
  1050. if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
  1051. else throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
  1052. if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
  1053. else throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
  1054. }
  1055. isExpCoeffsCalc_ = true;
  1056. } // end of void MultiLayerMie::ExpanCoeffs()
  1057. //**********************************************************************************//
  1058. // This function calculates the expansion coefficients inside the particle, //
  1059. // required to calculate the near-field parameters. //
  1060. // //
  1061. // Input parameters: //
  1062. // L: Number of layers //
  1063. // pl: Index of PEC layer. If there is none just send -1 //
  1064. // x: Array containing the size parameters of the layers [0..L-1] //
  1065. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  1066. // nmax: Maximum number of multipolar expansion terms to be used for the //
  1067. // calculations. Only use it if you know what you are doing, otherwise //
  1068. // set this parameter to -1 and the function will calculate it. //
  1069. // //
  1070. // Output parameters: //
  1071. // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
  1072. // //
  1073. // Return value: //
  1074. // Number of multipolar expansion terms used for the calculations //
  1075. //**********************************************************************************//
  1076. void MultiLayerMie::ExpanCoeffsV2() {
  1077. if (!isScaCoeffsCalc_)
  1078. throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!");
  1079. isExpCoeffsCalc_ = false;
  1080. std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);
  1081. const int L = refractive_index_.size();
  1082. aln_.resize(L + 1);
  1083. bln_.resize(L + 1);
  1084. cln_.resize(L + 1);
  1085. dln_.resize(L + 1);
  1086. for (int l = 0; l <= L; l++) {
  1087. aln_[l].resize(nmax_);
  1088. bln_[l].resize(nmax_);
  1089. cln_[l].resize(nmax_);
  1090. dln_[l].resize(nmax_);
  1091. }
  1092. // Yang, paragraph under eq. A3
  1093. // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
  1094. for (int n = 0; n < nmax_; n++) {
  1095. aln_[L][n] = an_[n];
  1096. bln_[L][n] = bn_[n];
  1097. cln_[L][n] = c_one;
  1098. dln_[L][n] = c_one;
  1099. printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", L, n, std::real(aln_[L][n]), std::imag(aln_[L][n]), L, n, std::real(bln_[L][n]), std::imag(bln_[L][n]), L, n, std::real(cln_[L][n]), std::imag(cln_[L][n]), L, n, real(dln_[L][n]), std::imag(dln_[L][n]));
  1100. }
  1101. std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
  1102. std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
  1103. std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;
  1104. std::vector<std::vector<std::complex<double> > > a(2);
  1105. a[0].resize(3);
  1106. a[1].resize(3);
  1107. auto& m = refractive_index_;
  1108. std::vector< std::complex<double> > m1(L);
  1109. for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
  1110. m1[L - 1] = std::complex<double> (1.0, 0.0);
  1111. std::complex<double> z, z1;
  1112. for (int l = L - 1; l >= 0; l--) {
  1113. z = size_param_[l]*m[l];
  1114. z1 = size_param_[l]*m1[l];
  1115. calcD1D3(z, D1z, D3z);
  1116. calcD1D3(z1, D1z1, D3z1);
  1117. calcPsiZeta(z, Psiz, Zetaz);
  1118. calcPsiZeta(z1, Psiz1, Zetaz1);
  1119. for (int n = 0; n < nmax_; n++) {
  1120. int n1 = n + 1;
  1121. a[0][0] = m1[l]*D3z[n1]*Zetaz[n1];
  1122. a[0][1] = -m1[l]*D1z[n1]*Psiz[n1];
  1123. a[0][2] = aln_[l + 1][n]*m[l]*D3z1[n1]*Zetaz1[n1];
  1124. a[0][2] -= dln_[l + 1][n]*m[l]*D1z1[n1]*Psiz1[n1];
  1125. a[1][0] = Zetaz[n1];
  1126. a[1][1] = -Psiz[n1];
  1127. a[1][2] = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
  1128. // aln
  1129. aln_[l][n] = (a[0][2]*a[1][1] - a[0][1]*a[1][2])/(a[0][0]*a[1][1] - a[0][1]*a[1][0]);
  1130. // dln
  1131. dln_[l][n] = (a[0][2]*a[1][0] - a[0][0]*a[1][2])/(a[0][1]*a[1][0] - a[0][0]*a[0][1]);
  1132. /*for (int i = 0; i < 2; i++) {
  1133. for (int j = 0; j < 3; j++) {
  1134. printf("a[%i, %i] = %g,%g ", i, j, real(a[i][j]), imag(a[i][j]));
  1135. }
  1136. printf("\n");
  1137. }
  1138. printf("aln_[%i, %i] = %g,%g; dln_[%i, %i] = %g,%g\n\n", l, n, real(aln_[l][n]), imag(aln_[l][n]), l, n, real(dln_[l][n]), imag(dln_[l][n]));*/
  1139. a[0][0] = D3z[n1]*Zetaz[n1];
  1140. a[0][1] = -D1z[n1]*Psiz[n1];
  1141. a[0][2] = bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
  1142. a[0][2] -= cln_[l + 1][n]*D1z1[n1]*Psiz1[n1];
  1143. a[1][0] = m1[l]*Zetaz[n1];
  1144. a[1][1] = -m1[l]*Psiz[n1];
  1145. a[1][2] = bln_[l + 1][n]*m[l]*Zetaz1[n1] - cln_[l + 1][n]*m[l]*Psiz1[n1];
  1146. // bln
  1147. bln_[l][n] = (a[0][2]*a[1][1] - a[0][1]*a[1][2])/(a[0][0]*a[1][1] - a[0][1]*a[1][0]);
  1148. // cln
  1149. cln_[l][n] = (a[0][2]*a[1][0] - a[0][0]*a[1][2])/(a[0][1]*a[1][0] - a[0][0]*a[0][1]);
  1150. printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", l, n, real(aln_[l][n]), imag(aln_[l][n]), l, n, real(bln_[l][n]), imag(bln_[l][n]), l, n, real(cln_[l][n]), imag(cln_[l][n]), l, n, real(dln_[l][n]), imag(dln_[l][n]));
  1151. } // end of all n
  1152. } // end of all l
  1153. // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
  1154. for (int n = 0; n < nmax_; ++n) {
  1155. //printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]),
  1156. //real(bln_[0][n]), imag(bln_[0][n]));
  1157. if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
  1158. else throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
  1159. if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
  1160. else throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
  1161. }
  1162. isExpCoeffsCalc_ = true;
  1163. } // end of void MultiLayerMie::ExpanCoeffs()
  1164. // ********************************************************************** //
  1165. // external scattering field = incident + scattered //
  1166. // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  1167. // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  1168. // ********************************************************************** //
  1169. void MultiLayerMie::fieldExt(const double Rho, const double Theta, const double Phi,
  1170. std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
  1171. std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
  1172. std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
  1173. std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
  1174. std::vector<std::complex<double> > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero);
  1175. std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
  1176. std::vector<double> Pi(nmax_), Tau(nmax_);
  1177. // Avoid calculation inside the particle
  1178. if (Rho < size_param_.back()) {
  1179. for (int i = 0; i < 3; i++) {
  1180. E[i] = c_zero;
  1181. H[i] = c_zero;
  1182. }
  1183. return;
  1184. }
  1185. calcD1D3(Rho, D1n, D3n);
  1186. calcPsiZeta(Rho, Psi, Zeta);
  1187. // Calculate spherical Bessel and Hankel functions
  1188. //sbesjh(Rho, jn, jnp, h1n, h1np);
  1189. // Calculate angular functions Pi and Tau
  1190. calcPiTau(std::cos(Theta), Pi, Tau);
  1191. for (int n = 0; n < nmax_; n++) {
  1192. int n1 = n + 1;
  1193. double rn = static_cast<double>(n1);
  1194. // using BH 4.12 and 4.50
  1195. calcSpherHarm(Rho, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
  1196. // scattered field: BH p.94 (4.45)
  1197. std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
  1198. for (int i = 0; i < 3; i++) {
  1199. Es[i] = Es[i] + En*(c_i*an_[n]*N3e1n[i] - bn_[n]*M3o1n[i]);
  1200. Hs[i] = Hs[i] + En*(c_i*bn_[n]*N3o1n[i] + an_[n]*M3e1n[i]);
  1201. }
  1202. }
  1203. // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
  1204. // basis unit vectors = er, etheta, ephi
  1205. std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
  1206. {
  1207. using std::sin;
  1208. using std::cos;
  1209. Ei[0] = eifac*sin(Theta)*cos(Phi);
  1210. Ei[1] = eifac*cos(Theta)*cos(Phi);
  1211. Ei[2] = -eifac*sin(Phi);
  1212. }
  1213. // magnetic field
  1214. double hffact = 1.0/(cc_*mu_);
  1215. for (int i = 0; i < 3; i++) {
  1216. Hs[i] = hffact*Hs[i];
  1217. }
  1218. // incident H field: BH p.26 (2.43), p.89 (4.21)
  1219. std::complex<double> hffacta = hffact;
  1220. std::complex<double> hifac = eifac*hffacta;
  1221. {
  1222. using std::sin;
  1223. using std::cos;
  1224. Hi[0] = hifac*sin(Theta)*sin(Phi);
  1225. Hi[1] = hifac*cos(Theta)*sin(Phi);
  1226. Hi[2] = hifac*cos(Phi);
  1227. }
  1228. for (int i = 0; i < 3; i++) {
  1229. // electric field E [V m - 1] = EF*E0
  1230. E[i] = Ei[i] + Es[i];
  1231. H[i] = Hi[i] + Hs[i];
  1232. }
  1233. } // end of MultiLayerMie::fieldExt(...)
  1234. //**********************************************************************************//
  1235. // This function calculates the electric (E) and magnetic (H) fields inside and //
  1236. // around the particle. //
  1237. // //
  1238. // Input parameters (coordinates of the point): //
  1239. // Rho: Radial distance //
  1240. // Phi: Azimuthal angle //
  1241. // Theta: Polar angle //
  1242. // //
  1243. // Output parameters: //
  1244. // E, H: Complex electric and magnetic fields //
  1245. //**********************************************************************************//
  1246. void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi,
  1247. std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
  1248. std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
  1249. std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
  1250. std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
  1251. std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
  1252. std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
  1253. std::vector<double> Pi(nmax_), Tau(nmax_);
  1254. std::vector<std::complex<double> > Ei(3), Hi(3);
  1255. int l = 0; // Layer number
  1256. std::complex<double> ml;
  1257. // Initialize E and H
  1258. for (int i = 0; i < 3; i++) {
  1259. E[i] = c_zero;
  1260. H[i] = c_zero;
  1261. }
  1262. if (Rho > size_param_.back()) {
  1263. l = size_param_.size();
  1264. ml = c_one;
  1265. } else {
  1266. for (int i = size_param_.size() - 1; i >= 0 ; i--) {
  1267. if (Rho <= size_param_[i]) {
  1268. l = i;
  1269. // break;
  1270. }
  1271. }
  1272. ml = refractive_index_[l];
  1273. }
  1274. calcD1D3(Rho, D1n, D3n);
  1275. calcPsiZeta(Rho, Psi, Zeta);
  1276. // Calculate spherical Bessel and Hankel functions and their derivatives
  1277. //sbesjh(Rho*ml, jn, jnp, h1n, h1np);
  1278. //sbesjh(2.0*PI_*Rho*ml, jn, jnp, h1n, h1np);
  1279. //printf("2.0*PI*Rho*ml = %10.5er%+10.5ei\n",std::real(2.0*PI_*Rho*ml), std::imag(2.0*PI_*Rho*ml));
  1280. // Calculate angular functions Pi and Tau
  1281. calcPiTau(std::cos(Theta), Pi, Tau);
  1282. //printf("Thetd = %g, cos(Theta) = %g\n", Theta, std::cos(Theta));
  1283. //printf("jn:\n");
  1284. //for (auto p : jn) printf("%+11.4er%+11.4ei\n",p.real(), p.imag());
  1285. //printf("Pi:\n");
  1286. //for (auto p : Pi) printf("%11.4e\n",p);
  1287. //printf("Tau:\n");
  1288. //for (auto p : Tau) printf("%11.4e\n",p);
  1289. for (int n = nmax_ - 2; n >= 0; n--) {
  1290. int n1 = n + 1;
  1291. double rn = static_cast<double>(n1);
  1292. // using BH 4.12 and 4.50
  1293. calcSpherHarm(Rho, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
  1294. calcSpherHarm(Rho, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
  1295. // auto deriv1 = -rn*jn[n1]+Rho*jn[n1-1];
  1296. // auto deriv2 = Rho*jnp[n1] + jn[n1];
  1297. // printf("n=%d deriv1: %+11.4e deriv2: %+11.4ei\n",n1, deriv1.real(), deriv2.real());
  1298. // printf("N1e1n[%d]: ", n1);
  1299. // for (auto p : N1e1n) printf("%+11.4er%+11.4ei\t",p.real(), p.imag());
  1300. // printf("\n");
  1301. // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
  1302. std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
  1303. for (int i = 0; i < 3; i++) {
  1304. // electric field E [V m - 1] = EF*E0
  1305. E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
  1306. + c_i*aln_[l][n]*N3e1n[i] - bln_[l][n]*M3o1n[i]);
  1307. H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
  1308. + c_i*bln_[l][n]*N3o1n[i] + aln_[l][n]*M3e1n[i]);
  1309. Ei[i] += En*(M1o1n[i] - c_i*N1e1n[i]);
  1310. Hi[i] += En*(-M1e1n[i] - c_i*N1o1n[i]);
  1311. }
  1312. } // end of for all n
  1313. //printf("rho = %11.4e; phi = %11.4eº; theta = %11.4eº; x[%i] = %11.4e; m[%i] = %11.4er%+10.5ei\n", Rho, Phi*180./PI_, Theta*180./PI_, l, size_param_[l], l, std::real(ml), std::imag(ml));
  1314. // magnetic field
  1315. double hffact = 1.0/(cc_*mu_);
  1316. for (int i = 0; i < 3; i++) {
  1317. H[i] = hffact*H[i];
  1318. Hi[i] *= hffact;
  1319. //printf("E[%i] = %10.5er%+10.5ei; Ei[%i] = %10.5er%+10.5ei; H[%i] = %10.5er%+10.5ei; Hi[%i] = %10.5er%+10.5ei\n", i, std::real(E[i]), std::imag(E[i]), i, std::real(Ei[i]), std::imag(Ei[i]), i, std::real(H[i]), std::imag(H[i]), i, std::real(Hi[i]), std::imag(Hi[i]));
  1320. }
  1321. } // end of MultiLayerMie::calcField(...)
  1322. //**********************************************************************************//
  1323. // This function calculates complex electric and magnetic field in the surroundings //
  1324. // and inside the particle. //
  1325. // //
  1326. // Input parameters: //
  1327. // L: Number of layers //
  1328. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  1329. // x: Array containing the size parameters of the layers [0..L-1] //
  1330. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  1331. // nmax: Maximum number of multipolar expansion terms to be used for the //
  1332. // calculations. Only use it if you know what you are doing, otherwise //
  1333. // set this parameter to 0 (zero) and the function will calculate it. //
  1334. // ncoord: Number of coordinate points //
  1335. // Coords: Array containing all coordinates where the complex electric and //
  1336. // magnetic fields will be calculated //
  1337. // //
  1338. // Output parameters: //
  1339. // E, H: Complex electric and magnetic field at the provided coordinates //
  1340. // //
  1341. // Return value: //
  1342. // Number of multipolar expansion terms used for the calculations //
  1343. //**********************************************************************************//
  1344. void MultiLayerMie::RunFieldCalculation() {
  1345. double Rho, Theta, Phi;
  1346. // Calculate scattering coefficients an_ and bn_
  1347. ScattCoeffs();
  1348. // std::vector<std::complex<double> > an1(nmax_), bn1(nmax_);
  1349. // calc_an_bn_bulk(an1, bn1, size_param_.back(), refractive_index_.back());
  1350. // for (int n = 0; n < nmax_; n++) {
  1351. // printf("an_[%i] = %11.4er%+10.5ei; an_bulk_[%i] = %11.4er%+10.5ei\n", n, std::real(an_[n]), std::imag(an_[n]), n, std::real(an1[n]), std::imag(an1[n]));
  1352. // printf("bn_[%i] = %11.4er%+10.5ei; bn_bulk_[%i] = %11.4er%+10.5ei\n", n, std::real(bn_[n]), std::imag(bn_[n]), n, std::real(bn1[n]), std::imag(bn1[n]));
  1353. // }
  1354. // Calculate expansion coefficients aln_, bln_, cln_, and dln_
  1355. ExpanCoeffs();
  1356. //ExpanCoeffsV2();
  1357. // for (int i = 0; i < nmax_; ++i) {
  1358. // printf("cln_[%i] = %11.4er%+10.5ei; dln_[%i] = %11.4er%+10.5ei\n", i, std::real(cln_[0][i]), std::imag(cln_[0][i]),
  1359. // i, std::real(dln_[0][i]), std::imag(dln_[0][i]));
  1360. // }
  1361. long total_points = coords_[0].size();
  1362. E_.resize(total_points);
  1363. H_.resize(total_points);
  1364. for (auto& f : E_) f.resize(3);
  1365. for (auto& f : H_) f.resize(3);
  1366. for (int point = 0; point < total_points; point++) {
  1367. const double& Xp = coords_[0][point];
  1368. const double& Yp = coords_[1][point];
  1369. const double& Zp = coords_[2][point];
  1370. // Convert to spherical coordinates
  1371. Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
  1372. // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
  1373. Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
  1374. // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
  1375. if (Xp == 0.0)
  1376. Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
  1377. else
  1378. Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
  1379. // Avoid convergence problems due to Rho too small
  1380. if (Rho < 1e-5) Rho = 1e-5;
  1381. //printf("X = %g; Y = %g; Z = %g; pho = %g; phi = %g; theta = %g\n", Xp, Yp, Zp, Rho, Phi*180./PI_, Theta*180./PI_);
  1382. //*******************************************************//
  1383. // external scattering field = incident + scattered //
  1384. // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  1385. // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  1386. //*******************************************************//
  1387. // This array contains the fields in spherical coordinates
  1388. std::vector<std::complex<double> > Es(3), Hs(3);
  1389. // Firstly the easiest case: the field outside the particle
  1390. // if (Rho >= GetSizeParameter()) {
  1391. // fieldExt(Rho, Theta, Phi, Es, Hs);
  1392. // } else {
  1393. calcField(Rho, Theta, Phi, Es, Hs); //Should work fine both: inside and outside the particle
  1394. //}
  1395. { //Now, convert the fields back to cartesian coordinates
  1396. using std::sin;
  1397. using std::cos;
  1398. E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
  1399. E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
  1400. E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
  1401. H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
  1402. H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
  1403. H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
  1404. }
  1405. } // end of for all field coordinates
  1406. } // end of MultiLayerMie::RunFieldCalculation()
  1407. } // end of namespace nmie