123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- #ifndef SRC_NMIE_HPP_
- #define SRC_NMIE_HPP_
- //**********************************************************************************//
- // Copyright (C) 2009-2018 Ovidio Pena <ovidio@bytesfall.com> //
- // Copyright (C) 2013-2018 Konstantin Ladutenko <kostyfisik@gmail.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite at least one of the following references: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie //
- // calculation of electromagnetic near-field for a multilayered //
- // sphere," Computer Physics Communications, vol. 214, May 2017, //
- // pp. 225-230. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- #define VERSION "2.2" //Compare with Makefile and setup.py
- #include <array>
- #include <complex>
- #include <cstdlib>
- #include <iostream>
- #include <vector>
- #include "nmie-precision.hpp"
- #ifdef MULTI_PRECISION
- #include <boost/math/constants/constants.hpp>
- #endif
- namespace nmie {
- int ScattCoeffs(const unsigned int L, const int pl,
- const std::vector<double>& x, const std::vector<std::complex<double> >& m,
- const int nmax,
- std::vector<std::complex<double> >& an,
- std::vector<std::complex<double> >& bn);
- int ExpanCoeffs(const unsigned int L, const int pl,
- const std::vector<double>& x, const std::vector<std::complex<double> >& m,
- const int nmax,
- std::vector<std::vector<std::complex<double> > >& an,
- std::vector<std::vector<std::complex<double> > >& bn,
- std::vector<std::vector<std::complex<double> > >& cn,
- std::vector<std::vector<std::complex<double> > >& dn);
- //helper functions
- template<class T> inline T pow2(const T value) {return value*value;}
- template<class T> inline T cabs(const std::complex<T> value)
- {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));}
- template <typename FloatType>
- int newround(FloatType x) {
- return x >= 0 ? static_cast<int>(x + 0.5):static_cast<int>(x - 0.5);
- //return x >= 0 ? (x + 0.5).convert_to<int>():(x - 0.5).convert_to<int>();
- }
- template<typename T>
- inline std::complex<T> my_exp(const std::complex<T>& x) {
- using std::exp; // use ADL
- T const& r = exp(x.real());
- return std::polar(r, x.imag());
- }
- // pl, nmax, mode_n, mode_type
- int nMie(const unsigned int L,
- const int pl,
- std::vector<double>& x, std::vector<std::complex<double> >& m,
- const unsigned int nTheta, std::vector<double>& Theta,
- const int nmax,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr,
- double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2,
- int mode_n, int mode_type);
- // pl and nmax
- int nMie(const unsigned int L,
- const int pl,
- std::vector<double>& x, std::vector<std::complex<double> >& m,
- const unsigned int nTheta, std::vector<double>& Theta,
- const int nmax,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr,
- double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
- // no pl and nmax
- int nMie(const unsigned int L,
- std::vector<double>& x, std::vector<std::complex<double> >& m,
- const unsigned int nTheta, std::vector<double>& Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr,
- double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
- // pl
- int nMie(const unsigned int L,
- const int pl,
- std::vector<double>& x, std::vector<std::complex<double> >& m,
- const unsigned int nTheta, std::vector<double>& Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr,
- double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
- // nmax
- int nMie(const unsigned int L,
- std::vector<double>& x, std::vector<std::complex<double> >& m,
- const unsigned int nTheta, std::vector<double>& Theta,
- const int nmax,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr,
- double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
- int nField(const unsigned int L, const int pl,
- const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax,
- const int mode_n, const int mode_type, const unsigned int ncoord,
- const std::vector<double>& Xp, const std::vector<double>& Yp, const std::vector<double>& Zp,
- std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H);
- // constants for per mode evaluation
- enum Modes {kAll = -1, kElectric = 0, kMagnetic = 1};
- template <typename FloatType = double>
- class MultiLayerMie {
- public:
- const FloatType PI_=3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308;
- // light speed [m s-1]
- const double cc_ = 2.99792458e8;
- // assume non-magnetic (MU=MU0=const) [N A-2]
- const FloatType mu_ = 4.0*PI_*1.0e-7;
- // Run calculation
- void RunMieCalculation();
- void RunFieldCalculation();
- void RunFieldCalculationPolar(const int input_outer_perimeter_points = 1,
- const int radius_points=1,
- const double from_Rho=0, const double to_Rho=static_cast<double>(1.),
- const double from_Theta=0, const double to_Theta=static_cast<double>(3.14159265358979323),
- const double from_Phi=0, const double to_Phi=static_cast<double>(3.14159265358979323));
- void calcScattCoeffs();
- void calcExpanCoeffs();
- // Return calculation results
- FloatType GetQext();
- FloatType GetQsca();
- FloatType GetQabs();
- FloatType GetQbk();
- FloatType GetQpr();
- FloatType GetAsymmetryFactor();
- FloatType GetAlbedo();
- std::vector<std::complex<FloatType> > GetS1();
- std::vector<std::complex<FloatType> > GetS2();
- std::vector<std::complex<FloatType> > GetAn(){return an_;};
- std::vector<std::complex<FloatType> > GetBn(){return bn_;};
- std::vector< std::vector<std::complex<FloatType> > > GetLayerAn(){return aln_;};
- std::vector< std::vector<std::complex<FloatType> > > GetLayerBn(){return bln_;};
- std::vector< std::vector<std::complex<FloatType> > > GetLayerCn(){return cln_;};
- std::vector< std::vector<std::complex<FloatType> > > GetLayerDn(){return dln_;};
- // Problem definition
- // Modify size of all layers
- void SetLayersSize(const std::vector<FloatType>& layer_size);
- // Modify refractive index of all layers
- void SetLayersIndex(const std::vector< std::complex<FloatType> >& index);
- // Modify scattering (theta) angles
- void SetAngles(const std::vector<FloatType>& angles);
- // Modify coordinates for field calculation
- void SetFieldCoords(const std::vector< std::vector<FloatType> >& coords);
- // Modify index of PEC layer
- void SetPECLayer(int layer_position = 0);
- // Modify the mode taking into account for evaluation of output variables
- void SetModeNmaxAndType(int mode_n, int mode_type){mode_n_ = mode_n; mode_type_ = mode_type;};
- // Set a fixed value for the maximun number of terms
- void SetMaxTerms(int nmax);
- // Get maximum number of terms
- int GetMaxTerms() {return nmax_;};
- bool isMieCalculated(){return isMieCalculated_;};
- // Clear layer information
- void ClearLayers();
- void MarkUncalculated();
- // Read parameters
- // Get total size parameter of particle
- FloatType GetSizeParameter();
- // Returns size of all layers
- std::vector<FloatType> GetLayersSize(){return size_param_;};
- // Returns refractive index of all layers
- std::vector<std::complex<FloatType> > GetLayersIndex(){return refractive_index_;};
- // Returns scattering (theta) angles
- std::vector<FloatType> GetAngles(){return theta_;};
- // Returns coordinates used for field calculation
- std::vector<std::vector<FloatType> > GetFieldCoords(){return coords_;};
- // Returns index of PEC layer
- int GetPECLayer(){return PEC_layer_position_;};
- std::vector<std::vector< std::complex<FloatType> > > GetFieldE(){return E_;}; // {X[], Y[], Z[]}
- std::vector<std::vector< std::complex<FloatType> > > GetFieldH(){return H_;};
- // Get fields in spherical coordinates.
- std::vector<std::vector< std::complex<FloatType> > > GetFieldEs(){return E_;}; // {rho[], teha[], phi[]}
- std::vector<std::vector< std::complex<FloatType> > > GetFieldHs(){return H_;};
- protected:
- // Size parameter for all layers
- std::vector<FloatType> size_param_;
- // Refractive index for all layers
- std::vector< std::complex<FloatType> > refractive_index_;
- // Scattering coefficients
- std::vector<std::complex<FloatType> > an_, bn_;
- std::vector< std::vector<std::complex<FloatType> > > aln_, bln_, cln_, dln_;
- // Points for field evaluation
- std::vector< std::vector<FloatType> > coords_;
- private:
- unsigned int calcNstop(FloatType xL = -1);
- unsigned int calcNmax(FloatType xL = -1);
- std::complex<FloatType> calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);
- std::complex<FloatType> calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);
- std::complex<FloatType> calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau);
- std::complex<FloatType> calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau);
- void calcD1D3(std::complex<FloatType> z,
- std::vector<std::complex<FloatType> >& D1,
- std::vector<std::complex<FloatType> >& D3);
- void calcPsiZeta(std::complex<FloatType> x,
- std::vector<std::complex<FloatType> >& Psi,
- std::vector<std::complex<FloatType> >& Zeta);
- void calcPiTau(const FloatType& costheta,
- std::vector<FloatType>& Pi, std::vector<FloatType>& Tau);
- void calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,
- const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,
- const FloatType& Pi, const FloatType& Tau, const FloatType& n,
- std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n,
- std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n);
- void calcFieldByComponents(const FloatType Rho, const FloatType Theta, const FloatType Phi,
- std::vector<std::complex<FloatType> >& E,
- std::vector<std::complex<FloatType> >& H);
- bool isExpCoeffsCalc_ = false;
- bool isScaCoeffsCalc_ = false;
- bool isMieCalculated_ = false;
- // Scattering angles for scattering pattern in radians
- std::vector<FloatType> theta_;
- // Should be -1 if there is no PEC.
- int PEC_layer_position_ = -1;
- int mode_n_ = Modes::kAll;
- int mode_type_ = Modes::kAll;
- // with calcNmax(int first_layer);
- int nmax_ = -1;
- int nmax_preset_ = -1;
- /// Store result
- FloatType Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
- std::vector<std::vector< std::complex<FloatType> > > E_, H_; // {X[], Y[], Z[]}
- std::vector<std::vector< std::complex<FloatType> > > Es_, Hs_; // {X[], Y[], Z[]}
- std::vector<std::complex<FloatType> > S1_, S2_;
- }; // end of class MultiLayerMie
- } // end of namespace nmie
- #endif // SRC_NMIE_HPP_
|