test_Riccati_Bessel_logarithmic_derivative.cc 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. #include "gtest/gtest.h"
  2. #include "../src/nmie-impl.hpp"
  3. #include "test_spec_functions_data.hpp"
  4. // From W. Yang APPLIED OPTICS Vol. 42, No. 9, 20 March 2003
  5. // Dtest refractive index is m={1.05,1}, the size parameter is x = 80
  6. std::vector<int> Dtest_n({0,1,30,50,60,70,75,80,85,90,99,116,130});
  7. std::vector< std::complex<double>>
  8. Dtest_D1({
  9. //Orig
  10. // {0.11449e-15 ,-0.10000e+01 },{0.74646e-04 ,-0.10000e+01 },
  11. // {0.34764e-01 ,-0.99870},{0.95292e-01 ,-0.99935},
  12. // {0.13645,-0.10019e+01 },{0.18439,-0.10070e+01 },
  13. // {0.21070,-0.10107e+01 },{0.23845,-0.10154e+01 },
  14. // {0.26752,-0.10210e+01 },{0.29777,-0.10278e+01 },
  15. // {0.35481,-0.10426e+01 },{0.46923,-0.10806e+01 },
  16. // {0.17656,-0.13895e+01 }
  17. // mod (from Python mpmath)
  18. {0.0,-1.0}, {7.464603828e-5,-0.9999958865},
  19. {0.03476380918,-0.9986960672},{0.09529213152,-0.999347654},
  20. {0.1364513887,-1.001895883},{0.184388335,-1.006979164},
  21. {0.2107044267,-1.01072099},{0.2384524295,-1.015382914},
  22. {0.2675164524,-1.021040337},{0.2977711192,-1.027753418},
  23. {0.3548096904,-1.042622957},{0.4692294405,-1.080629479},
  24. {0.5673827836,-1.121108944},
  25. });
  26. std::vector< std::complex<double>>
  27. Dtest_D2({{0.64966e-69 ,-0.10000e+01 },{0.74646e-04 ,-0.10000e+01 },
  28. {0.34764e-01 ,-0.99870},{0.95292e-01 ,-0.99935},
  29. {0.13645,-0.10019e+01 },{0.17769,-0.10099e+01 },
  30. {0.41264e-01 ,-0.21076e+01 },{-0.20190,0.10435e+01 },
  31. {-0.26343,0.10223e+01 },{-0.29339,0.10291e+01 },
  32. {-0.34969,0.10437e+01 },{-0.46296,0.10809e+01 },
  33. {-0.56047,0.11206e+01 }});
  34. std::vector< std::complex<double>>
  35. Dtest_D3({{0.00000,0.10000e+01 },{-0.73809e-04 ,0.10000e+01 },
  36. {-0.34344e-01 ,0.99912},{-0.94022e-01 ,0.10004e+01 },
  37. {-0.13455,0.10032e+01 },{-0.18172,0.10084e+01 },
  38. {-0.20762,0.10122e+01 },{-0.23494,0.10169e+01 },
  39. {-0.26357,0.10225e+01 },{-0.29339,0.10291e+01 },
  40. {-0.34969,0.10437e+01 },{-0.46296,0.10809e+01 },
  41. {-0.56047,0.11206e+01 }});
  42. int LeRu_cutoff(std::complex<double> z) {
  43. auto x = std::abs(z);
  44. return std::round(x + 11 * std::pow(x, (1.0 / 3.0)) + 1);
  45. }
  46. void parse_mpmath_data(const double min_abs_tol, const std::tuple< std::complex<double>, int, std::complex<double>, double, double > data,
  47. std::complex<double> &z, int &n, std::complex<double> &func_mp,
  48. double &re_abs_tol, double &im_abs_tol){
  49. z = std::get<0>(data);
  50. n = std::get<1>(data);
  51. func_mp = std::get<2>(data);
  52. re_abs_tol = ( std::get<3>(data) > min_abs_tol && std::real(func_mp) < min_abs_tol)
  53. ? std::get<3>(data) : min_abs_tol;
  54. im_abs_tol = ( std::get<4>(data) > min_abs_tol && std::imag(func_mp) < min_abs_tol)
  55. ? std::get<4>(data) : min_abs_tol;
  56. // if re(func_mp) < 0.5 then round will give 0. To avoid zero tolerance add one.
  57. re_abs_tol *= std::abs(std::round(std::real(func_mp))) + 1;
  58. im_abs_tol *= std::abs(std::round(std::imag(func_mp))) + 1;
  59. }
  60. template<class T> inline T pow2(const T value) {return value*value;}
  61. //TEST(zeta_psizeta_test, DISABLED_mpmath_generated_input) {
  62. TEST(zeta_psizeta_test, mpmath_generated_input) {
  63. double min_abs_tol = 2e-5;
  64. std::complex<double> z, zeta_mp;
  65. int n;
  66. double re_abs_tol, im_abs_tol;
  67. for (const auto &data : zeta_test_16digits) {
  68. parse_mpmath_data(min_abs_tol, data, z, n, zeta_mp, re_abs_tol, im_abs_tol);
  69. auto Nstop = LeRu_cutoff(z)+10000;
  70. if (n > Nstop) continue;
  71. std::vector<std::complex<nmie::FloatType>> D1dr(Nstop+135), D3(Nstop+135),
  72. PsiZeta(Nstop+135), Psi(Nstop);
  73. nmie::evalDownwardD1(z, D1dr);
  74. nmie::evalUpwardD3(z, D1dr, D3, PsiZeta);
  75. nmie::evalUpwardPsi(z, D1dr, Psi);
  76. auto a = std::real(PsiZeta[n]);
  77. auto b = std::imag(PsiZeta[n]);
  78. auto c = std::real(Psi[n]);
  79. auto d = std::imag(Psi[n]);
  80. auto c_one = std::complex<nmie::FloatType>(0, 1);
  81. auto zeta = (a*c + b*d)/(pow2(c) + pow2(d)) +
  82. c_one * ((b*c - a*d)/(pow2(c) + pow2(d)));
  83. // zeta = PsiZeta[n]/Psi[n];
  84. if (std::isnan(std::real(zeta)) || std::isnan(std::imag(zeta))) continue;
  85. // std::vector<std::complex<nmie::FloatType>> D1dr(Nstop+35), D3(Nstop+35), zeta(Nstop);
  86. // nmie::evalDownwardD1(z, D1dr);
  87. // nmie::evalUpwardD3(z, D1dr, D3);
  88. // nmie::evalUpwardZeta(z, D3, zeta);
  89. EXPECT_NEAR(std::real(zeta), std::real(zeta_mp), re_abs_tol)
  90. << "zeta at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  91. EXPECT_NEAR(std::imag(zeta), std::imag(zeta_mp), im_abs_tol)
  92. << "zeta at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  93. }
  94. }
  95. // Old way to evaluate Zeta
  96. TEST(zeta_test, DISABLED_mpmath_generated_input) {
  97. //TEST(zeta_test, mpmath_generated_input) {
  98. double min_abs_tol = 2e-5;
  99. std::complex<double> z, zeta_mp;
  100. int n;
  101. double re_abs_tol, im_abs_tol;
  102. for (const auto &data : zeta_test_16digits) {
  103. parse_mpmath_data(min_abs_tol, data, z, n, zeta_mp, re_abs_tol, im_abs_tol);
  104. auto Nstop = LeRu_cutoff(z)+10000;
  105. if (n > Nstop) continue;
  106. std::vector<std::complex<nmie::FloatType>> D1dr(Nstop), D3(Nstop),
  107. PsiZeta(Nstop), zeta(Nstop);
  108. nmie::evalDownwardD1(z, D1dr);
  109. nmie::evalUpwardD3(z, D1dr, D3, PsiZeta);
  110. nmie::evalUpwardZeta(z, D3, zeta);
  111. if (std::isnan(std::real(zeta[n])) || std::isnan(std::imag(zeta[n]))) continue;
  112. EXPECT_NEAR(std::real(zeta[n]), std::real(zeta_mp), re_abs_tol)
  113. << "zeta[n] at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  114. EXPECT_NEAR(std::imag(zeta[n]), std::imag(zeta_mp), im_abs_tol)
  115. << "zeta at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  116. }
  117. }
  118. TEST(psizeta_test, mpmath_generated_input) {
  119. double min_abs_tol = 9e-11;
  120. std::complex<double> z, PsiZeta_mp;
  121. int n;
  122. double re_abs_tol, im_abs_tol;
  123. for (const auto &data : psi_mul_zeta_test_16digits) {
  124. parse_mpmath_data(min_abs_tol, data, z, n, PsiZeta_mp, re_abs_tol, im_abs_tol);
  125. auto Nstop = LeRu_cutoff(z)+10000;
  126. if (n > Nstop) continue;
  127. std::vector<std::complex<nmie::FloatType>> D1dr(Nstop), D3(Nstop), PsiZeta(Nstop);
  128. nmie::evalDownwardD1(z, D1dr);
  129. nmie::evalUpwardD3(z, D1dr, D3, PsiZeta);
  130. EXPECT_NEAR(std::real(PsiZeta[n]), std::real(PsiZeta_mp), re_abs_tol)
  131. << "PsiZeta at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  132. EXPECT_NEAR(std::imag(PsiZeta[n]), std::imag(PsiZeta_mp), im_abs_tol)
  133. << "PsiZeta at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  134. // std::vector<nmie::FloatType> PsiUp(Nstop);
  135. // nmie::evalPsi(std::real(z), PsiUp);
  136. // EXPECT_NEAR(((PsiUp[n])), std::real(PsiZeta_mp), re_abs_tol)
  137. // << "PsiZeta(up) at n=" << n << " z="<<z;
  138. }
  139. }
  140. TEST(psi_test, mpmath_generated_input) {
  141. double min_abs_tol = 1e-12;
  142. std::complex<double> z, Psi_mp;
  143. int n;
  144. double re_abs_tol, im_abs_tol;
  145. for (const auto &data : psi_test_16digits) {
  146. parse_mpmath_data(min_abs_tol, data, z, n, Psi_mp, re_abs_tol, im_abs_tol);
  147. auto Nstop = LeRu_cutoff(z)+10000;
  148. if (n > Nstop) continue;
  149. std::vector<std::complex<nmie::FloatType>> D1dr(Nstop+35), Psi(Nstop);
  150. nmie::evalDownwardD1(z, D1dr);
  151. nmie::evalUpwardPsi(z, D1dr, Psi);
  152. EXPECT_NEAR(std::real(Psi[n]), std::real(Psi_mp), re_abs_tol)
  153. << "Psi at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  154. EXPECT_NEAR(std::imag(Psi[n]), std::imag(Psi_mp), im_abs_tol)
  155. << "Psi at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  156. }
  157. }
  158. //TEST(D3test, DISABLED_mpmath_generated_input) {
  159. TEST(D3test, mpmath_generated_input) {
  160. double min_abs_tol = 2e-11;
  161. std::complex<double> z, D3_mp;
  162. int n;
  163. double re_abs_tol, im_abs_tol;
  164. for (const auto &data : D3_test_16digits) {
  165. parse_mpmath_data(min_abs_tol, data, z, n, D3_mp, re_abs_tol, im_abs_tol);
  166. auto Nstop = LeRu_cutoff(z)+35;
  167. std::vector<std::complex<nmie::FloatType>> D1dr(Nstop), D3(Nstop), PsiZeta(Nstop);
  168. nmie::evalDownwardD1(z, D1dr);
  169. nmie::evalUpwardD3(z, D1dr, D3, PsiZeta);
  170. EXPECT_NEAR(std::real(D3[n]), std::real(D3_mp), re_abs_tol)
  171. << "D3 at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  172. EXPECT_NEAR(std::imag(D3[n]), std::imag(D3_mp), im_abs_tol)
  173. << "D3 at n=" << n << " Nstop="<< Nstop<<" z="<<z;
  174. }
  175. }
  176. //TEST(D1test, DISABLED_mpmath_generated_input) {
  177. TEST(D1test, mpmath_generated_input) {
  178. double min_abs_tol = 2e-11;
  179. std::complex<double> z, D1_mp;
  180. int n;
  181. double re_abs_tol, im_abs_tol;
  182. for (const auto &data : D1_test_16digits) {
  183. parse_mpmath_data(min_abs_tol, data, z, n, D1_mp, re_abs_tol, im_abs_tol);
  184. auto Nstop = LeRu_cutoff(z)+1;
  185. std::vector<std::complex<nmie::FloatType>> Db(Nstop),Dold(Nstop+35), r;
  186. int valid_digits = 6;
  187. int nstar = nmie::getNStar(Nstop, z, valid_digits);
  188. r.resize(nstar);
  189. nmie::evalBackwardR(z,r);
  190. nmie::convertRtoD1(z, r, Db);
  191. if (n > Db.size()) continue;
  192. EXPECT_NEAR(std::real(Db[n]), std::real(D1_mp), re_abs_tol)
  193. << "Db at n=" << n << " Nstop="<< Nstop<<" nstar="<<nstar<< " z="<<z;
  194. EXPECT_NEAR(std::imag(Db[n]), std::imag(D1_mp), im_abs_tol)
  195. << "Db at n=" << n << " Nstop="<< Nstop<<" nstar="<<nstar<< " z="<<z;
  196. nmie::evalDownwardD1(z, Dold);
  197. if (n > Dold.size()) continue;
  198. EXPECT_NEAR(std::real(Dold[n]), std::real(D1_mp), re_abs_tol)
  199. << "Dold at n=" << n << " Nstop="<< Nstop<< " z="<<z;
  200. EXPECT_NEAR(std::imag(Dold[n]), std::imag(D1_mp), im_abs_tol)
  201. << "Dold at n=" << n << " Nstop="<< Nstop<< " z="<<z;
  202. }
  203. }
  204. //TEST(D1test, DISABLED_WYang_data){
  205. TEST(D1test, WYang_data){
  206. double abs_tol = 1e-9;
  207. int test_loss_digits = std::round(15 - std::log10(1/abs_tol));
  208. int Nstop = 131;
  209. std::vector<std::complex<nmie::FloatType>> Df(Nstop), Db(Nstop),Dold(Nstop), r;
  210. std::complex<nmie::FloatType> z(1.05,1);
  211. z = z*80.0;
  212. // eval D1 directly from backward recurrence
  213. nmie::evalDownwardD1(z, Dold);
  214. // eval forward recurrence
  215. r.resize(Nstop+1);
  216. nmie::evalForwardR(z, r);
  217. nmie::convertRtoD1(z, r, Df);
  218. // eval backward recurrence
  219. int valid_digits = 6;
  220. int nstar = nmie::getNStar(Nstop, z, valid_digits);
  221. r.resize(nstar);
  222. nmie::evalBackwardR(z,r);
  223. nmie::convertRtoD1(z, r, Db);
  224. for (int i = 0; i < Dtest_n.size(); i++) {
  225. int n = Dtest_n[i];
  226. int forward_loss_digits = nmie::evalKapteynNumberOfLostSignificantDigits(n, z);
  227. forward_loss_digits += 3; // Kapteyn is too optimistic
  228. if (test_loss_digits > forward_loss_digits ) {
  229. EXPECT_NEAR(std::real(Df[n]), std::real(Dtest_D1[i]),
  230. abs_tol) << "f at n=" << n << " lost digits = " << forward_loss_digits;
  231. EXPECT_NEAR(std::imag(Df[n]), std::imag(Dtest_D1[i]),
  232. abs_tol) << "f at n=" << n << " lost digits = " << forward_loss_digits;
  233. }
  234. EXPECT_NEAR(std::real(Db[n]), std::real(Dtest_D1[i]),
  235. abs_tol) << "b at n=" << n;
  236. EXPECT_NEAR(std::imag(Db[n]), std::imag(Dtest_D1[i]),
  237. abs_tol) << "b at n=" << n;
  238. if (n < Dold.size()-15) {
  239. EXPECT_NEAR(std::real(Dold[n]), std::real(Dtest_D1[i]),
  240. abs_tol) << "old at n=" << n;
  241. EXPECT_NEAR(std::imag(Dold[n]), std::imag(Dtest_D1[i]),
  242. abs_tol) << "old at n=" << n;
  243. }
  244. }
  245. }
  246. TEST(KaptyenTest, HandlesInput) {
  247. // H.Du APPLIED OPTICS, Vol. 43, No. 9, 20 March 2004
  248. double l = nmie::evalKapteynNumberOfLostSignificantDigits(80, std::complex<double>(100,100));
  249. EXPECT_EQ(l, 7)<<"Should be equal";
  250. std::complex<double> z(10000,0);
  251. l = nmie::evalKapteynNumberOfLostSignificantDigits(5070, z);
  252. EXPECT_EQ(l, 0)<<"Should be equal";
  253. // find NStar such that l_nstar(z) - l_nmax(z) >= valid_digits
  254. int NStar = nmie::getNStar(5070, z,6);
  255. EXPECT_GE(NStar, 10130);
  256. // const double pi=3.14159265358979323846;
  257. // z = std::complex<double>(100,100);
  258. // l = nmie::evalKapteynNumberOfLostSignificantDigits(1, z);
  259. // EXPECT_EQ(l, 0)<<"Should be equal";
  260. }
  261. int main(int argc, char **argv) {
  262. testing::InitGoogleTest(&argc, argv);
  263. return RUN_ALL_TESTS();
  264. }