123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- from glob import glob
- from operator import truediv
- from matplotlib import pyplot as plt
- import cmath
- from scattnlay import mesomie, mie
- import numpy as np
- import scipy.io
- from functools import wraps
- import time
- from eval_spectra import multi_lorentzian, params_count as pc
- import cma
- import sys
- from optical_constants import read_refractive_index_from_yaml as read_nk
- isPlot = True
- # isPlot = False
- def timeit(func):
- @wraps(func)
- def timeit_wrapper(*args, **kwargs):
- start_time = time.perf_counter()
- result = func(*args, **kwargs)
- end_time = time.perf_counter()
- total_time = end_time - start_time
- print(
- f'Function {func.__name__}{args} {kwargs} Took {total_time:.4f} seconds')
- return result
- return timeit_wrapper
- min_lim = 0.4
- max_lim = 0.75
- # mat = scipy.io.loadmat('d-parameters/rs=4.mat')
- # omega_ratio = mat['omegav'][0]
- # d_perp = mat['dperp'][0]*10
- from_disk = np.loadtxt('rs4-d_perp_interpolated.txt')
- from_disk = from_disk[:,
- from_disk[0, :] > min_lim
- ]
- from_disk = from_disk[:,
- from_disk[0, :] < max_lim
- ]
- omega_ratio = from_disk[0, :]
- d_perp = from_disk[1, :] + 1j*from_disk[2, :]
- c = 299792458 # m/s
- h_reduced = 6.5821e-16 # eV s
- omega_p = 5.9 # eV
- gamma = 0.1 # eV
- eps_d = 1
- # omega_p_star = 3.81 # eV #orig
- omega_p_star = 5.81 # eV
- omega = omega_ratio*omega_p_star
- # WL_mkm = 2*np.pi/((omega/c)/h_reduced)*1e6
- WL = 2*np.pi/((omega_ratio * omega_p_star/c)/h_reduced)*1e6 # mkm
- # min_WL_available = 0.1879
- # max_WL_available = 1.9370
- # WL[WL < min_WL_available] = min_WL_available
- # WL[WL > max_WL_available] = max_WL_available
- index_Ag = read_nk('Ag-Johnson-1972.yml', WL, kind=1)
- eps_Ag = index_Ag**2
- # print(index_Ag)
- # plt.figure('index')
- # plt.plot(index_Ag[:, 0], np.real(index_Ag[:, 1]))
- # plt.plot(index_Ag[:, 0], np.imag(index_Ag[:, 1]))
- # plt.show()
- # sys.exit()
- def eps_m(omega):
- return 1 - omega_p * omega_p / (omega*omega + 1j*omega*gamma)
- n = 1 if isPlot else 1
- Rs = [2.5]*n # nm
- y_min = [1e-2]*n
- y_max = [1e1]*n
- # Rs = [2.5, 5, 10, 25] # nm
- # y_min = [1e-2, 1e-2, 1e-1, 1e-1]
- # y_max = [1e1, 1e1, 5e1, 5e1]
- # for om_rat in omega_ratio:
- R = 0
- @ timeit
- def run():
- for fig in range(len(Rs)):
- global R
- R = Rs[fig]
- Qext = []
- Qext_fit = []
- om_rat_plot = []
- x_fit_from_d_perp = np.array([0.09391149, 0.81234806, -0.30526326, -0.01044856,
- 0.3121473, 0.55333457, -0.01684191, 0.04727765,
- 0.11249052, 0.88368699, -0.04680872, -0.10982548])
- omega = omega_ratio*omega_p
- x = (omega/c) * R * 1e-9/h_reduced
- m_orig = np.sqrt(eps_m(omega))
- # m = np.sqrt(eps_m(omega))
- # m = index_Ag
- m = index_Ag[:, 1]
- # plt.figure('index2')
- # plt.plot(x, np.real(m), label='orig')
- # plt.plot(x, np.imag(m), label='orig')
- # plt.plot(x, np.real(m), label='mod')
- # plt.plot(x, np.imag(m), label='mod')
- # plt.legend()
- # plt.show()
- # sys.exit()
- Qext = getMesoQext(R, x, m_orig, d_perp)
- def getQfit(x_fit):
- d_fit = multi_lorentzian(omega_ratio, x_fit)
- return getMesoQext(R, x, m, d_fit)
- def rms_base(Q_rms, Q_fit):
- diff_re = np.real(Q_rms - Q_fit)
- diff_im = np.imag(Q_rms - Q_fit)
- rms = (np.sum(np.abs(diff_re)**2))
- rms += (np.sum(np.abs(diff_im)**2))
- return rms
- def rms(x0):
- Q_fit = getQfit(x0)
- return rms_base(Q_rms, Q_fit)
- def rms_x12(x0):
- x0[:pc] = x0[:pc]+x1
- Q_fit = getQfit(x0)
- return rms_base(Q_rms, Q_fit)
- def rms_x1(x0):
- Q_fit = getQfit(np.hstack((x1, x0)))
- return rms_base(Q_rms, Q_fit)
- x_fit_from_d_perp = np.array([0.09391149, 0.81234806, -0.30526326, -0.01044856,
- 0.3121473, 0.55333457, -0.01684191, 0.04727765,
- 0.11249052, 0.88368699, -0.04680872, -0.10982548])
- x0 = np.random.random(pc)
- Q_rms = Qext
- xfit, es = cma.fmin2(rms, x0, sigma0=2)
- # xfit = np.array([0.32740616895990493, -0.844352181880013, -
- # 0.5682552466755, 0.015925488550861087])
- x1 = np.copy(xfit)
- Qext_fit = getQfit(xfit)
- # print(x1)
- # x0 = np.random.random(pc)
- # # x0 = np.copy(x1)
- # x0 = np.hstack((x1, x0))
- # xfit, es = cma.fmin2(rms, x0, sigma0=0.2)
- # # xfit = np.array([-9.03308419e-01, -1.77584180e+00, -2.36259518e+01, 3.41837008e+00,
- # 5.75724471e-06, , 2.64230613e+00, , 4.72267415e+01, -1.61624064e+00])
- # # xfit = np.array([0.32740616895990493, -0.844352181880013, -
- # # 0.5682552466755, 0.015925488550861087])
- # x2 = np.copy(xfit)
- # Qext_fit = getQfit(np.hstack((x1, x2)))
- print(xfit)
- om_rat_plot = omega_ratio
- if isPlot:
- Qext_fit = getQfit(xfit)
- Qext_no_d = getMesoQext(R, x, m_orig, np.zeros(len(x)))
- Qext_no_d_mod = getMesoQext(R, x, m, np.zeros(len(x)))
- d_fit = multi_lorentzian(omega_ratio, xfit)
- plt.figure(fig)
- plt.plot(om_rat_plot, Qext_fit,
- label='fitted orig using mod', color='gray', lw=4)
- plt.plot(om_rat_plot, Qext_no_d,
- label='d=0 orig', color='gray', lw=4)
- plt.plot(om_rat_plot, Qext_no_d_mod,
- label='d=0 mod', color='gray', lw=4)
- plt.plot(om_rat_plot, Qext, label='direct orig', color='red', lw=1)
- plt.legend()
- # plt.yscale('log')
- # plt.xlim((0.4, 0.404))
- # plt.ylim((y_min[fig]*1.9, y_min[fig]*2.3))
- plt.xlim((0.4, 0.75))
- # plt.xlim((0.5, 0.6))
- # plt.ylim((y_min[fig], y_max[fig]))
- plt.title("Qext for R="+str(R))
- plt.figure("d_param "+str(fig))
- plt.plot(om_rat_plot, np.real(d_fit), label='re fit', lw=4)
- plt.plot(om_rat_plot, np.real(d_perp), label='re d_perp')
- plt.plot(om_rat_plot, np.imag(d_fit), label='im fit', lw=4)
- plt.plot(om_rat_plot, np.imag(d_perp), label='im d_perp')
- plt.legend()
- if isPlot:
- plt.show()
- # @timeit
- def getMesoQext(R, x, m, d_perp):
- Qext = np.zeros((len(x)))
- for i in range(len(x)):
- mesomie.calc_ab(R*10, # calc_ab needs R in angstrem
- x[i], # xd
- x[i] * m[i], # xm
- 1, # eps_d
- m[i] * m[i], # eps_m
- 0, # d_parallel
- d_perp[i]) # d_perp
- mesomie.calc_Q()
- Qext[i] = mesomie.GetQext()
- return Qext
- run()
|