scattnlay.pyx 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. # Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com>
  2. #
  3. # This file is part of python-scattnlay
  4. #
  5. # This program is free software: you can redistribute it and/or modify
  6. # it under the terms of the GNU General Public License as published by
  7. # the Free Software Foundation, either version 3 of the License, or
  8. # (at your option) any later version.
  9. #
  10. # This program is distributed in the hope that it will be useful,
  11. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. # GNU General Public License for more details.
  14. #
  15. # The only additional remark is that we expect that all publications
  16. # describing work using this software, or all commercial products
  17. # using it, cite the following reference:
  18. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  19. # a multilayered sphere," Computer Physics Communications,
  20. # vol. 180, Nov. 2009, pp. 2348-2354.
  21. #
  22. # You should have received a copy of the GNU General Public License
  23. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  24. from __future__ import division
  25. import numpy as np
  26. cimport numpy as np
  27. from libcpp.vector cimport vector
  28. from libcpp.vector cimport complex
  29. # cdef extern from "<vector>" namespace "std":
  30. # cdef cppclass vector[T]:
  31. # cppclass iterator:
  32. # T operator*()
  33. # iterator operator++()
  34. # bint operator==(iterator)
  35. # bint operator!=(iterator)
  36. # vector()
  37. # void push_back(T&)
  38. # T& operator[](int)
  39. # T& at(int)
  40. # iterator begin()
  41. # iterator end()
  42. cdef inline double *npy2c(np.ndarray a):
  43. assert a.dtype == np.float64
  44. if not (<object>a).flags["C_CONTIGUOUS"]: # Array is not contiguous, need to make contiguous copy
  45. a = a.copy('C')
  46. # Return data pointer
  47. return <double *>(a.data)
  48. cdef extern from "py_nmie.h":
  49. cdef int nMie(int L, int pl, vector[double] x, vector[complex] m, int nTheta, vector[double] Theta, int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, double S1r[], double S1i[], double S2r[], double S2i[])
  50. cdef int nField(int L, int pl, vector[double] x, vector[complex] m, int nmax, int nCoords, vector[double] Xp, vector[double] Yp, vector[double] Zp, double Erx[], double Ery[], double Erz[], double Eix[], double Eiy[], double Eiz[], double Hrx[], double Hry[], double Hrz[], double Hix[], double Hiy[], double Hiz[])
  51. def scattnlay(np.ndarray[np.float64_t, ndim = 2] x, np.ndarray[np.complex128_t, ndim = 2] m, np.ndarray[np.float64_t, ndim = 1] theta = np.zeros(0, dtype = np.float64), np.int_t pl = -1, np.int_t nmax = -1):
  52. cdef Py_ssize_t i
  53. cdef np.ndarray[np.int_t, ndim = 1] terms = np.zeros(x.shape[0], dtype = np.int)
  54. cdef np.ndarray[np.float64_t, ndim = 1] Qext = np.zeros(x.shape[0], dtype = np.float64)
  55. cdef np.ndarray[np.float64_t, ndim = 1] Qabs = np.zeros(x.shape[0], dtype = np.float64)
  56. cdef np.ndarray[np.float64_t, ndim = 1] Qsca = np.zeros(x.shape[0], dtype = np.float64)
  57. cdef np.ndarray[np.float64_t, ndim = 1] Qbk = np.zeros(x.shape[0], dtype = np.float64)
  58. cdef np.ndarray[np.float64_t, ndim = 1] Qpr = np.zeros(x.shape[0], dtype = np.float64)
  59. cdef np.ndarray[np.float64_t, ndim = 1] g = np.zeros(x.shape[0], dtype = np.float64)
  60. cdef np.ndarray[np.float64_t, ndim = 1] Albedo = np.zeros(x.shape[0], dtype = np.float64)
  61. cdef np.ndarray[np.complex128_t, ndim = 2] S1 = np.zeros((x.shape[0], theta.shape[0]), dtype = np.complex128)
  62. cdef np.ndarray[np.complex128_t, ndim = 2] S2 = np.zeros((x.shape[0], theta.shape[0]), dtype = np.complex128)
  63. cdef np.ndarray[np.float64_t, ndim = 1] S1r
  64. cdef np.ndarray[np.float64_t, ndim = 1] S1i
  65. cdef np.ndarray[np.float64_t, ndim = 1] S2r
  66. cdef np.ndarray[np.float64_t, ndim = 1] S2i
  67. for i in range(x.shape[0]):
  68. S1r = np.zeros(theta.shape[0], dtype = np.float64)
  69. S1i = np.zeros(theta.shape[0], dtype = np.float64)
  70. S2r = np.zeros(theta.shape[0], dtype = np.float64)
  71. S2i = np.zeros(theta.shape[0], dtype = np.float64)
  72. terms[i] = nMie(x.shape[1], pl, x[i].copy('C'), m[i].copy('C'), theta.shape[0], theta.copy('C'), nmax, &Qext[i], &Qsca[i], &Qabs[i], &Qbk[i], &Qpr[i], &g[i], &Albedo[i], npy2c(S1r), npy2c(S1i), npy2c(S2r), npy2c(S2i))
  73. S1[i] = S1r.copy('C') + 1.0j*S1i.copy('C')
  74. S2[i] = S2r.copy('C') + 1.0j*S2i.copy('C')
  75. return terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2
  76. #def fieldnlay(np.ndarray[np.float64_t, ndim = 2] x, np.ndarray[np.complex128_t, ndim = 2] m, np.ndarray[np.float64_t, ndim = 2] coords = np.zeros((0, 3), dtype = np.float64), np.int_t pl = 0, np.int_t nmax = 0):
  77. def fieldnlay(np.ndarray[np.float64_t, ndim = 2] x, np.ndarray[np.complex128_t, ndim = 2] m, np.ndarray[np.float64_t, ndim = 2] coords, np.int_t pl = 0, np.int_t nmax = 0):
  78. cdef Py_ssize_t i
  79. cdef np.ndarray[np.int_t, ndim = 1] terms = np.zeros(x.shape[0], dtype = np.int)
  80. cdef np.ndarray[np.complex128_t, ndim = 3] E = np.zeros((x.shape[0], coords.shape[0], 3), dtype = np.complex128)
  81. cdef np.ndarray[np.complex128_t, ndim = 3] H = np.zeros((x.shape[0], coords.shape[0], 3), dtype = np.complex128)
  82. cdef np.ndarray[np.float64_t, ndim = 1] Erx
  83. cdef np.ndarray[np.float64_t, ndim = 1] Ery
  84. cdef np.ndarray[np.float64_t, ndim = 1] Erz
  85. cdef np.ndarray[np.float64_t, ndim = 1] Eix
  86. cdef np.ndarray[np.float64_t, ndim = 1] Eiy
  87. cdef np.ndarray[np.float64_t, ndim = 1] Eiz
  88. cdef np.ndarray[np.float64_t, ndim = 1] Hrx
  89. cdef np.ndarray[np.float64_t, ndim = 1] Hry
  90. cdef np.ndarray[np.float64_t, ndim = 1] Hrz
  91. cdef np.ndarray[np.float64_t, ndim = 1] Hix
  92. cdef np.ndarray[np.float64_t, ndim = 1] Hiy
  93. cdef np.ndarray[np.float64_t, ndim = 1] Hiz
  94. for i in range(x.shape[0]):
  95. Erx = np.zeros(coords.shape[0], dtype = np.float64)
  96. Ery = np.zeros(coords.shape[0], dtype = np.float64)
  97. Erz = np.zeros(coords.shape[0], dtype = np.float64)
  98. Eix = np.zeros(coords.shape[0], dtype = np.float64)
  99. Eiy = np.zeros(coords.shape[0], dtype = np.float64)
  100. Eiz = np.zeros(coords.shape[0], dtype = np.float64)
  101. Hrx = np.zeros(coords.shape[0], dtype = np.float64)
  102. Hry = np.zeros(coords.shape[0], dtype = np.float64)
  103. Hrz = np.zeros(coords.shape[0], dtype = np.float64)
  104. Hix = np.zeros(coords.shape[0], dtype = np.float64)
  105. Hiy = np.zeros(coords.shape[0], dtype = np.float64)
  106. Hiz = np.zeros(coords.shape[0], dtype = np.float64)
  107. terms[i] = nField(x.shape[1], pl, x[i].copy('C'), m[i].copy('C'), nmax, coords.shape[0], coords[:, 0].copy('C'), coords[:, 1].copy('C'), coords[:, 2].copy('C'), npy2c(Erx), npy2c(Ery), npy2c(Erz), npy2c(Eix), npy2c(Eiy), npy2c(Eiz), npy2c(Hrx), npy2c(Hry), npy2c(Hrz), npy2c(Hix), npy2c(Hiy), npy2c(Hiz))
  108. E[i] = np.vstack((Erx.copy('C') + 1.0j*Eix.copy('C'), Ery.copy('C') + 1.0j*Eiy.copy('C'), Erz.copy('C') + 1.0j*Eiz.copy('C'))).transpose()
  109. H[i] = np.vstack((Hrx.copy('C') + 1.0j*Hix.copy('C'), Hry.copy('C') + 1.0j*Hiy.copy('C'), Hrz.copy('C') + 1.0j*Hiz.copy('C'))).transpose()
  110. return terms, E, H