123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893 |
- #ifndef SRC_NMIE_BASIC_HPP_
- #define SRC_NMIE_BASIC_HPP_
- //**********************************************************************************//
- // Copyright (C) 2009-2018 Ovidio Pena <ovidio@bytesfall.com> //
- // Copyright (C) 2013-2018 Konstantin Ladutenko <kostyfisik@gmail.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite at least one of the following references: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie //
- // calculation of electromagnetic near-field for a multilayered //
- // sphere," Computer Physics Communications, vol. 214, May 2017, //
- // pp. 225-230. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This class implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // [3] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie //
- // calculation of electromagnetic near-field for a multilayered //
- // sphere," Computer Physics Communications, vol. 214, May 2017, //
- // pp. 225-230. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include <iostream>
- #include <iomanip>
- #include <stdexcept>
- #include <vector>
- #include "special-functions-impl.hpp"
- #include "nmie.hpp"
- namespace nmie {
- //class implementation
- // ********************************************************************** //
- // Returns previously calculated Qext //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetQext() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(Qext_);
- }
- // ********************************************************************** //
- // Returns previously calculated Qabs //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetQabs() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(Qabs_);
- }
- // ********************************************************************** //
- // Returns previously calculated Qsca //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetQsca() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(Qsca_);
- }
- // ********************************************************************** //
- // Returns previously calculated Qbk //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetQbk() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(Qbk_);
- }
- // ********************************************************************** //
- // Returns previously calculated Qpr //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetQpr() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(Qpr_);
- }
- // ********************************************************************** //
- // Returns previously calculated assymetry factor //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(asymmetry_factor_);
- }
- // ********************************************************************** //
- // Returns previously calculated Albedo //
- // ********************************************************************** //
- template <typename FloatType>
- template <typename outputType>
- outputType MultiLayerMie<FloatType>::GetAlbedo() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return static_cast<outputType>(albedo_);
- }
- // ********************************************************************** //
- // Returns previously calculated S1 //
- // ********************************************************************** //
- template <typename FloatType>
- std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS1() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S1_;
- }
- // ********************************************************************** //
- // Returns previously calculated S2 //
- // ********************************************************************** //
- template <typename FloatType>
- std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS2() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S2_;
- }
- // ********************************************************************** //
- // Modify scattering (theta) angles //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType> &angles) {
- MarkUncalculated();
- theta_ = angles;
- }
- // ********************************************************************** //
- // Modify size of all layers //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetLayersSize(const std::vector<FloatType> &layer_size) {
- MarkUncalculated();
- size_param_.clear();
- FloatType prev_layer_size = 0.0;
- for (auto curr_layer_size : layer_size) {
- if (curr_layer_size <= 0.0)
- throw std::invalid_argument("Size parameter should be positive!");
- if (prev_layer_size > curr_layer_size)
- throw std::invalid_argument
- ("Size parameter for next layer should be larger than the previous one!");
- prev_layer_size = curr_layer_size;
- size_param_.push_back(curr_layer_size);
- }
- }
- // ********************************************************************** //
- // Modify refractive index of all layers //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetLayersIndex(const std::vector< std::complex<FloatType> > &index) {
- MarkUncalculated();
- refractive_index_ = index;
- }
- // ********************************************************************** //
- // Modify coordinates for field calculation //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetFieldCoords(const std::vector< std::vector<FloatType> > &coords) {
- if (coords.size() != 3)
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
- if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
- coords_ = coords;
- }
- // ********************************************************************** //
- // Modify index of PEC layer //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
- MarkUncalculated();
- if (layer_position < 0 && layer_position != -1)
- throw std::invalid_argument("Error! Layers are numbered from 0!");
- PEC_layer_position_ = layer_position;
- }
- // ********************************************************************** //
- // Set maximun number of terms to be used //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
- MarkUncalculated();
- nmax_preset_ = nmax;
- }
- // ********************************************************************** //
- // Get total size parameter of particle //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
- if (size_param_.size() > 0)
- return size_param_.back();
- else
- return 0;
- }
- // ********************************************************************** //
- // Mark uncalculated //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::MarkUncalculated() {
- isExpCoeffsCalc_ = false;
- isScaCoeffsCalc_ = false;
- isMieCalculated_ = false;
- }
- // ********************************************************************** //
- // Clear layer information //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::ClearLayers() {
- MarkUncalculated();
- size_param_.clear();
- refractive_index_.clear();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Computational core
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- template <typename FloatType>
- unsigned int LeRu_near_field_cutoff(const std::complex<FloatType> zz) {
- std::complex<double> z = ConvertComplex<double>(zz);
- auto x = std::abs(z);
- return std::round(x + 11 * std::pow(x, (1.0 / 3.0)) + 1);
- // return 10000;
- }
- // ********************************************************************** //
- // Calculate calcNstop - equation (17) //
- // ********************************************************************** //
- template <typename FloatType>
- unsigned int MultiLayerMie<FloatType>::calcNstop(FloatType xL) {
- unsigned int nmax = 0;
- //Wiscombe
- if (xL < size_param_.back()) xL = size_param_.back();
- if (xL <= 8) {
- nmax = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1);
- } else if (xL <= 4200) {
- nmax = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2);
- } else {
- nmax = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2);
- }
- //Use Le Ru cutoff for near field, as a universal one.
- auto Nstop = nmie::LeRu_near_field_cutoff(std::complex<FloatType>(xL, 0))+1;
- if (Nstop > nmax) nmax = Nstop;
- return nmax;
- }
- // ********************************************************************** //
- // Maximum number of terms required for the calculation //
- // ********************************************************************** //
- template <typename FloatType>
- unsigned int MultiLayerMie<FloatType>::calcNmax(FloatType xL) {
- const int pl = PEC_layer_position_;
- const unsigned int first_layer = (pl > 0) ? pl : 0;
- unsigned int ri, riM1, nmax = 0;
- const std::vector<FloatType> &x = size_param_;
- const std::vector<std::complex<FloatType> > &m = refractive_index_;
- nmax = calcNstop(xL);
- for (unsigned int i = first_layer; i < x.size(); i++) {
- if (static_cast<int>(i) > PEC_layer_position_) // static_cast used to avoid warning
- ri = newround(cabs(x[i]*m[i]));
- else
- ri = 0;
- nmax = std::max(nmax, ri);
- // first layer is pec, if pec is present
- if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
- riM1 = newround(cabs(x[i - 1]* m[i]));
- else
- riM1 = 0;
- nmax = std::max(nmax, riM1);
- }
- nmax += 15; // Final nmax value
- #ifdef MULTI_PRECISION
- nmax += MULTI_PRECISION; //TODO we may need to use more terms that this for MP computations.
- #endif
- // nmax *= nmax;
- // printf("using nmax %i\n", nmax);
- return nmax;
- }
- // ********************************************************************** //
- // Calculate an - equation (5) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::
- calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
- std::complex<FloatType> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<FloatType> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- // std::cout<< std::setprecision(100)
- // << "Ql " << PsiXL
- // << std::endl;
- return Num/Denom;
- }
- // ********************************************************************** //
- // Calculate bn - equation (6) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
- std::complex<FloatType> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<FloatType> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // ********************************************************************** //
- // Calculates S1 - equation (25a) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau) {
- return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n);
- }
- // ********************************************************************** //
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
- // Pi and Tau) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a complex argument (z). //
- // Equations (16a), (16b) and (18a) - (18d) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // nmax_: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType> > &D1,
- std::vector<std::complex<FloatType> > &D3) {
- std::vector<std::complex<FloatType> > PsiZeta(nmax_+1);
- evalDownwardD1(z, D1);
- evalUpwardD3 (z, D1, D3, PsiZeta);
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // complex argument (z). //
- // Equations (20a) - (21b) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate Psi and Zeta //
- // nmax: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
- std::vector<std::complex<FloatType> > &Psi,
- std::vector<std::complex<FloatType> > &Zeta) {
- std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1),
- PsiZeta(nmax_+1);
- // First, calculate the logarithmic derivatives
- evalDownwardD1(z, D1);
- // Now, use the upward recurrence to calculate Psi equations (20ab)
- evalUpwardPsi(z, D1, Psi);
- // Now, use the upward recurrence to calculate Psi*Zeta equations (18ad)
- evalUpwardD3 (z, D1, D3, PsiZeta);
- for (unsigned int i = 0; i < Zeta.size(); i++) {
- Zeta[i] = PsiZeta[i]/Psi[i];
- }
- // evalUpwardZeta(z, D3, Zeta);
- }
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcPiTauAllTheta(const double from_Theta, const double to_Theta,
- std::vector<std::vector<FloatType> > &Pi,
- std::vector<std::vector<FloatType> > &Tau) {
- const unsigned int perimeter_points = Pi.size();
- for (auto &val:Pi) val.resize(available_maximal_nmax_);
- for (auto &val:Tau) val.resize(available_maximal_nmax_);
- double delta_Theta = eval_delta<double>(perimeter_points, from_Theta, to_Theta);
- for (unsigned int i=0; i < perimeter_points; i++) {
- auto Theta = static_cast<FloatType>(from_Theta + i*delta_Theta);
- // Calculate angular functions Pi and Tau
- calcPiTau(nmm::cos(Theta), Pi[i], Tau[i]);
- }
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for a given value of cos(Theta). //
- // Equations (26a) - (26c) //
- // //
- // Input parameters: //
- // nmax_: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcPiTau(const FloatType &costheta,
- std::vector<FloatType> &Pi, std::vector<FloatType> &Tau) {
- int nmax = Pi.size();
- if (Pi.size() != Tau.size())
- throw std::invalid_argument("Error! Pi and Tau vectors should have the same size!");
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- // Initialize Pi and Tau
- Pi[0] = 1.0; // n=1
- Tau[0] = costheta;
- // Calculate the actual values
- if (nmax > 1) {
- Pi[1] = 3*costheta*Pi[0]; //n=2
- Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
- for (int i = 2; i < nmax; i++) { //n=[3..nmax_]
- Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
- Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
- }
- }
- } // end of MultiLayerMie::calcPiTau(...)
- //**********************************************************************************//
- // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), //
- // required to calculate the near-field parameters. //
- // //
- // Input parameters: //
- // Rho: Radial distance //
- // Phi: Azimuthal angle //
- // Theta: Polar angle //
- // rn: Either the spherical Ricatti-Bessel function of first or third kind //
- // Dn: Logarithmic derivative of rn //
- // Pi, Tau: Angular functions Pi and Tau //
- // n: Order of vector spherical harmonics //
- // //
- // Output parameters: //
- // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics //
- //**********************************************************************************//
- template <typename FloatType> template <typename evalType>
- void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<evalType> Rho, const evalType Theta, const evalType Phi,
- const std::complex<evalType> &rn, const std::complex<evalType> &Dn,
- const evalType &Pi, const evalType &Tau, const evalType &n,
- std::vector<std::complex<evalType> > &Mo1n, std::vector<std::complex<evalType> > &Me1n,
- std::vector<std::complex<evalType> > &No1n, std::vector<std::complex<evalType> > &Ne1n) {
- // using eq 4.50 in BH
- std::complex<evalType> c_zero(0.0, 0.0);
- // using nmm::sin;
- // using nmm::cos;
- auto sin_Phi = sin_t(Phi);
- auto cos_Phi = cos_t(Phi);
- auto sin_Theta = sin(Theta);
- Mo1n[0] = c_zero;
- Mo1n[1] = cos_Phi*Pi*rn/Rho;
- Mo1n[2] = -sin_Phi*Tau*rn/Rho;
- Me1n[0] = c_zero;
- Me1n[1] = -sin_Phi*Pi*rn/Rho;
- Me1n[2] = -cos_Phi*Tau*rn/Rho;
- No1n[0] = sin_Phi*(n*n + n)*sin_Theta*Pi*rn/Rho/Rho;
- No1n[1] = sin_Phi*Tau*Dn*rn/Rho;
- No1n[2] = cos_Phi*Pi*Dn*rn/Rho;
- Ne1n[0] = cos_Phi*(n*n + n)*sin_Theta*Pi*rn/Rho/Rho;
- Ne1n[1] = cos_Phi*Tau*Dn*rn/Rho;
- Ne1n[2] = -sin_Phi*Pi*Dn*rn/Rho;
- } // end of MultiLayerMie::calcSpherHarm(...)
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcScattCoeffs() {
- isScaCoeffsCalc_ = false;
- an_.clear();
- bn_.clear();
- const std::vector<FloatType> &x = size_param_;
- const std::vector<std::complex<FloatType> > &m = refractive_index_;
- const int &pl = PEC_layer_position_;
- const int L = refractive_index_.size();
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- // ***********************************************************************//
- int fl = (pl > 0) ? pl : 0;
- if (nmax_preset_ <= 0) nmax_ = calcNmax();
- else nmax_ = nmax_preset_;
- std::complex<FloatType> z1, z2;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- std::vector<std::complex<FloatType> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
- std::vector<std::vector<std::complex<FloatType> > > Q(L), Ha(L), Hb(L);
- for (int l = 0; l < L; l++) {
- Q[l].resize(nmax_ + 1);
- Ha[l].resize(nmax_);
- Hb[l].resize(nmax_);
- }
- an_.resize(nmax_);
- bn_.resize(nmax_);
- std::vector<std::complex<FloatType> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (int n = 0; n <= nmax_; n++) {
- D1_mlxl[n] = std::complex<FloatType>(0.0, - 1.0);
- D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
- }
- } else { // Regular layer
- z1 = x[fl]* m[fl];
- // Calculate D1 and D3
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (int n = 0; n < nmax_; n++) {
- Ha[fl][n] = D1_mlxl[n + 1];
- Hb[fl][n] = D1_mlxl[n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- std::complex<FloatType> Temp, Num, Denom;
- std::complex<FloatType> G1, G2;
- for (int l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
- //************************************************************//
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
- //Calculate D1 and D3 for z1
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- //Calculate D1 and D3 for z2
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
- //*************************************************//
- //Calculate Q, Ha and Hb in the layers fl + 1..L //
- //*************************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = std::complex<FloatType>(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0)
- *std::complex<FloatType>(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real()));
- Denom = std::complex<FloatType>(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (int n = 1; n <= nmax_; n++) {
- Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]);
- Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]);
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (int n = 1; n <= nmax_; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = -D1_mlxlM1[n];
- G2 = -D3_mlxlM1[n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- } // end of for Ha and Hb terms
- } // end of for layers iteration
- //**************************************//
- //Calculate Psi and Zeta for XL //
- //**************************************//
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(std::complex<FloatType>(x[L - 1],0.0), PsiXL, ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- FloatType a0=0, b0=0;
- for (int n = 0; n < nmax_; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0), std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- if (n == 0) {a0 = cabs(an_[0]); b0 = cabs(bn_[0]);}
- if (n == nmax_ - 1 && nmax_preset_ <= 0) {
- std::cout << "Failed to converge in Mie series for nmax="<<nmax_ << std::endl;
- std::cout << "convergence threshold: "<< convergence_threshold_ << std::endl;
- std::cout << "Mie series a[nmax]/a[1]:" << cabs(an_[n]) / a0 << " and b[nmax]/b[1]:" << cabs(bn_[n]) / b0 << std::endl;
- }
- if (cabs(an_[n]) / a0 < convergence_threshold_ &&
- cabs(bn_[n]) / b0 < convergence_threshold_) {
- if (nmax_preset_ <= 0) nmax_ = n;
- break;
- }
- if (nmm::isnan(an_[n].real()) || nmm::isnan(an_[n].imag()) ||
- nmm::isnan(bn_[n].real()) || nmm::isnan(bn_[n].imag())
- ) {
- std::cout << "nmax value was changed due to unexpected error!!! New values is "<< n
- << " (was "<<nmax_<<")"<<std::endl;
- nmax_ = n;
- break;
- }
- } // end of for an and bn terms
- isScaCoeffsCalc_ = true;
- } // end of MultiLayerMie::calcScattCoeffs()
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // nmax_: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunMieCalculation() {
- if (size_param_.size() != refractive_index_.size())
- throw std::invalid_argument("Each size parameter should have only one index!");
- if (size_param_.size() == 0)
- throw std::invalid_argument("Initialize model first!");
- const std::vector<FloatType> &x = size_param_;
- //MarkUncalculated();
- // Calculate scattering coefficients
- if (!isScaCoeffsCalc_) calcScattCoeffs();
- // Initialize the scattering parameters
- Qext_ = 0.0;
- Qsca_ = 0.0;
- Qabs_ = 0.0;
- Qbk_ = 0.0;
- Qpr_ = 0.0;
- asymmetry_factor_ = 0.0;
- albedo_ = 0.0;
- // Initialize the scattering amplitudes
- std::vector<std::complex<FloatType> > tmp1(theta_.size(),std::complex<FloatType>(0.0, 0.0));
- S1_.swap(tmp1);
- S2_ = S1_;
- // Precalculate cos(theta) - gives about 5% speed up.
- std::vector<FloatType> costheta(theta_.size(), 0.0);
- for (unsigned int t = 0; t < theta_.size(); t++) {
- costheta[t] = nmm::cos(theta_[t]);
- }
- std::vector<FloatType> Pi(nmax_), Tau(nmax_);
- std::complex<FloatType> Qbktmp(0.0, 0.0);
- std::vector< std::complex<FloatType> > Qbktmp_ch(nmax_ - 1, Qbktmp);
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (int n = nmax_ - 2; n >= 0; n--) {
- // for (int n = 0; n < nmax_; n++) {
- const int n1 = n + 1;
- if (mode_n_ == Modes::kAll) {
- // Equation (27)
- Qext_ += (n1 + n1 + 1.0) * (an_[n].real() + bn_[n].real());
- // Equation (28)
- Qsca_ += (n1 + n1 + 1.0) * (an_[n].real() * an_[n].real() + an_[n].imag() * an_[n].imag()
- + bn_[n].real() * bn_[n].real() + bn_[n].imag() * bn_[n].imag());
- // std::cout<<"n ="<< n1 << " ext:"<<Qext_ <<" sca:"<<Qsca_<<std::endl;
- // Equation (29)
- Qpr_ += ((n1 * (n1 + 2.0) / (n1 + 1.0)) * ((an_[n] * std::conj(an_[n1]) + bn_[n] * std::conj(bn_[n1])).real())
- + ((n1 + n1 + 1.0) / (n1 * (n1 + 1.0))) * (an_[n] * std::conj(bn_[n])).real());
- // Equation (33)
- Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (an_[n] - bn_[n]);
- // Calculate the scattering amplitudes (S1 and S2) Equations (25a) - (25b)
- for (unsigned int t = 0; t < theta_.size(); t++) {
- calcPiTau(costheta[t], Pi, Tau);
- S1_[t] += calc_S1(n1, an_[n], bn_[n], Pi[n], Tau[n]);
- S2_[t] += calc_S2(n1, an_[n], bn_[n], Pi[n], Tau[n]);
- }
- continue;
- }
- if (n1 == mode_n_) {
- if (mode_type_ == Modes::kElectric || mode_type_ == Modes::kAll) {
- Qext_ += (n1 + n1 + 1.0) * (an_[n].real());
- Qsca_ += (n1 + n1 + 1.0) * (an_[n].real() * an_[n].real() + an_[n].imag() * an_[n].imag());
- Qpr_ += std::nan("");
- Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (an_[n]);
- for (unsigned int t = 0; t < theta_.size(); t++) {
- calcPiTau(costheta[t], Pi, Tau);
- S1_[t] += calc_S1(n1, an_[n], static_cast<std::complex<FloatType>>(0), Pi[n], Tau[n]);
- S2_[t] += calc_S2(n1, an_[n], static_cast<std::complex<FloatType>>(0), Pi[n], Tau[n]);
- }
- }
- if (mode_type_ == Modes::kMagnetic || mode_type_ == Modes::kAll) {
- Qext_ += (n1 + n1 + 1.0) * (bn_[n].real());
- Qsca_ += (n1 + n1 + 1.0) * (bn_[n].real() * bn_[n].real() + bn_[n].imag() * bn_[n].imag());
- Qpr_ += std::nan("");
- Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (bn_[n]);
- for (unsigned int t = 0; t < theta_.size(); t++) {
- calcPiTau(costheta[t], Pi, Tau);
- S1_[t] += calc_S1(n1, static_cast<std::complex<FloatType>>(0), bn_[n], Pi[n], Tau[n]);
- S2_[t] += calc_S2(n1, static_cast<std::complex<FloatType>>(0), bn_[n], Pi[n], Tau[n]);
- }
- }
- }
- }
- FloatType x2 = pow2(x.back());
- Qext_ = 2.0*(Qext_)/x2; // Equation (27)
- Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
- Qabs_ = Qext_ - Qsca_; // Equation (30)
- albedo_ = Qsca_/Qext_; // Equation (31)
- asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
- isMieCalculated_ = true;
- }
- } // end of namespace nmie
- #endif // SRC_NMIE_BASIC_HPP_
|