123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- from matplotlib import pyplot as plt
- import cmath
- from scattnlay import mesomie, mie
- import numpy as np
- import scipy.io
- min_lim = 0.4
- max_lim = 0.75
- # mat = scipy.io.loadmat('d-parameters/rs=4.mat')
- # omega_ratio = mat['omegav'][0]
- # d_perp = mat['dperp'][0]*10
- from_disk = np.loadtxt('rs4-d_perp_interpolated.txt')
- omega_ratio = from_disk[0, :]
- d_perp = from_disk[1, :] + 1j*from_disk[2, :]
- c = 299792458 # m/s
- h_reduced = 6.5821e-16 # eV s
- omega_p = 5.9 # eV
- gamma = 0.1 # eV
- eps_d = 1
- def eps_m(omega):
- return 1 - omega_p * omega_p / (omega*omega + 1j*omega*gamma)
- Rs = [2.5, 5, 10, 25]
- y_min = [1e-2, 1e-2, 1e-1, 1e-1]
- y_max = [1e1, 1e1, 5e1, 5e1]
- # for om_rat in omega_ratio:
- for fig in range(len(Rs)):
- R = Rs[fig]
- Qext = []
- Qext_mie = []
- om_rat_plot = []
- for i in range(len(omega_ratio)):
- om_rat = omega_ratio[i]
- if om_rat < min_lim or om_rat > max_lim:
- continue
- omega = om_rat*omega_p
- m = cmath.sqrt(eps_m(omega))
- x = (omega/c) * R * 1e-9/h_reduced
- mesomie.calc_ab(R*10, # R in angstrem
- x, # xd
- x * m, # xm
- 1, # eps_d
- m * m, # eps_m
- 0, # d_parallel
- d_perp[i]) # d_perp
- mesomie.calc_Q()
- mie.SetLayersSize(x)
- mie.SetLayersIndex(m)
- mie.RunMieCalculation()
- Qext.append(mesomie.GetQext())
- Qext_mie.append(mie.GetQext())
- # print(x, m, Qext[-1] - mie.GetQext())
- om_rat_plot.append(om_rat)
- # print(Qext)
- plt.figure(fig)
- plt.plot(om_rat_plot, Qext_mie, label='classic', color='gray', lw=4)
- plt.plot(om_rat_plot, Qext, label='non-classic', color='red', lw=4)
- plt.legend()
- plt.yscale('log')
- plt.xlim((0.4, 0.75))
- plt.ylim((y_min[fig], y_max[fig]))
- plt.title("R="+str(R))
- plt.show()
|