| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246 | //**********************************************************************************////    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   ////    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>          ////                                                                                  ////    This file is part of scattnlay                                                ////                                                                                  ////    This program is free software: you can redistribute it and/or modify          ////    it under the terms of the GNU General Public License as published by          ////    the Free Software Foundation, either version 3 of the License, or             ////    (at your option) any later version.                                           ////                                                                                  ////    This program is distributed in the hope that it will be useful,               ////    but WITHOUT ANY WARRANTY; without even the implied warranty of                ////    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 ////    GNU General Public License for more details.                                  ////                                                                                  ////    The only additional remark is that we expect that all publications            ////    describing work using this software, or all commercial products               ////    using it, cite the following reference:                                       ////    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           ////        a multilayered sphere," Computer Physics Communications,                  ////        vol. 180, Nov. 2009, pp. 2348-2354.                                       ////                                                                                  ////    You should have received a copy of the GNU General Public License             ////    along with this program.  If not, see <http://www.gnu.org/licenses/>.         ////**********************************************************************************////**********************************************************************************//// This class implements the algorithm for a multilayered sphere described by:      ////    [1] W. Yang, "Improved recursive algorithm for light scattering by a          ////        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720.  ////                                                                                  //// You can find the description of all the used equations in:                       ////    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           ////        a multilayered sphere," Computer Physics Communications,                  ////        vol. 180, Nov. 2009, pp. 2348-2354.                                       ////                                                                                  //// Hereinafter all equations numbers refer to [2]                                   ////**********************************************************************************//#include "bessel.h"#include "nmie.h"#include <array>#include <algorithm>#include <cstdio>#include <cstdlib>#include <stdexcept>#include <vector>namespace nmie {  //helpers  template<class T> inline T pow2(const T value) {return value*value;}  int round(double x) {    return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);  }  //**********************************************************************************//  // This function emulates a C call to calculate the actual scattering parameters    //  // and amplitudes.                                                                  //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send -1                          //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to -1 and the function will calculate it              //  //                                                                                  //  // Output parameters:                                                               //  //   Qext: Efficiency factor for extinction                                         //  //   Qsca: Efficiency factor for scattering                                         //  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //  //   Qbk: Efficiency factor for backscattering                                      //  //   Qpr: Efficiency factor for the radiation pressure                              //  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //  //   S1, S2: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {    if (x.size() != L || m.size() != L)        throw std::invalid_argument("Declared number of layers do not fit x and m!");    if (Theta.size() != nTheta)        throw std::invalid_argument("Declared number of sample for Theta is not correct!");    try {      MultiLayerMie multi_layer_mie;      multi_layer_mie.SetLayersSize(x);      multi_layer_mie.SetLayersIndex(m);      multi_layer_mie.SetAngles(Theta);      multi_layer_mie.SetPECLayer(pl);      multi_layer_mie.SetMaxTerms(nmax);      multi_layer_mie.RunMieCalculation();      *Qext = multi_layer_mie.GetQext();      *Qsca = multi_layer_mie.GetQsca();      *Qabs = multi_layer_mie.GetQabs();      *Qbk = multi_layer_mie.GetQbk();      *Qpr = multi_layer_mie.GetQpr();      *g = multi_layer_mie.GetAsymmetryFactor();      *Albedo = multi_layer_mie.GetAlbedo();      S1 = multi_layer_mie.GetS1();      S2 = multi_layer_mie.GetS2();    } catch(const std::invalid_argument& ia) {      // Will catch if  multi_layer_mie fails or other errors.      std::cerr << "Invalid argument: " << ia.what() << std::endl;      throw std::invalid_argument(ia);      return -1;    }    return 0;  }  //**********************************************************************************//  // This function is just a wrapper to call the full 'nMie' function with fewer      //  // parameters, it is here mainly for compatibility with older versions of the       //  // program. Also, you can use it if you neither have a PEC layer nor want to define //  // any limit for the maximum number of terms.                                       //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //                                                                                  //  // Output parameters:                                                               //  //   Qext: Efficiency factor for extinction                                         //  //   Qsca: Efficiency factor for scattering                                         //  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //  //   Qbk: Efficiency factor for backscattering                                      //  //   Qpr: Efficiency factor for the radiation pressure                              //  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //  //   S1, S2: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {    return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);  }  //**********************************************************************************//  // This function is just a wrapper to call the full 'nMie' function with fewer      //  // parameters, it is useful if you want to include a PEC layer but not a limit      //  // for the maximum number of terms.                                                 //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send -1                          //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //                                                                                  //  // Output parameters:                                                               //  //   Qext: Efficiency factor for extinction                                         //  //   Qsca: Efficiency factor for scattering                                         //  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //  //   Qbk: Efficiency factor for backscattering                                      //  //   Qpr: Efficiency factor for the radiation pressure                              //  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //  //   S1, S2: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {    return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);  }  //**********************************************************************************//  // This function is just a wrapper to call the full 'nMie' function with fewer      //  // parameters, it is useful if you want to include a limit for the maximum number   //  // of terms but not a PEC layer.                                                    //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to -1 and the function will calculate it              //  //                                                                                  //  // Output parameters:                                                               //  //   Qext: Efficiency factor for extinction                                         //  //   Qsca: Efficiency factor for scattering                                         //  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //  //   Qbk: Efficiency factor for backscattering                                      //  //   Qpr: Efficiency factor for the radiation pressure                              //  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //  //   S1, S2: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {    return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);  }  //**********************************************************************************//  // This function emulates a C call to calculate complex electric and magnetic field //  // in the surroundings and inside (TODO) the particle.                              //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to 0 (zero) and the function will calculate it.       //  //   ncoord: Number of coordinate points                                            //  //   Coords: Array containing all coordinates where the complex electric and        //  //           magnetic fields will be calculated                                     //  //                                                                                  //  // Output parameters:                                                               //  //   E, H: Complex electric and magnetic field at the provided coordinates          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  int nField(const unsigned int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const unsigned int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {    if (x.size() != L || m.size() != L)      throw std::invalid_argument("Declared number of layers do not fit x and m!");    if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord        || E.size() != ncoord || H.size() != ncoord)      throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");    for (auto f:E)      if (f.size() != 3)        throw std::invalid_argument("Field E is not 3D!");    for (auto f:H)      if (f.size() != 3)        throw std::invalid_argument("Field H is not 3D!");    try {      MultiLayerMie multi_layer_mie;      //multi_layer_mie.SetPECLayer(pl); // TODO add PEC layer to field plotting      multi_layer_mie.SetLayersSize(x);      multi_layer_mie.SetLayersIndex(m);      multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});      multi_layer_mie.RunFieldCalculation();      E = multi_layer_mie.GetFieldE();      H = multi_layer_mie.GetFieldH();    } catch(const std::invalid_argument& ia) {      // Will catch if  multi_layer_mie fails or other errors.      std::cerr << "Invalid argument: " << ia.what() << std::endl;      throw std::invalid_argument(ia);      return - 1;    }    return 0;  }  // ********************************************************************** //  // Returns previously calculated Qext                                     //  // ********************************************************************** //  double MultiLayerMie::GetQext() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return Qext_;  }  // ********************************************************************** //  // Returns previously calculated Qabs                                     //  // ********************************************************************** //  double MultiLayerMie::GetQabs() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return Qabs_;  }  // ********************************************************************** //  // Returns previously calculated Qsca                                     //  // ********************************************************************** //  double MultiLayerMie::GetQsca() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return Qsca_;  }  // ********************************************************************** //  // Returns previously calculated Qbk                                      //  // ********************************************************************** //  double MultiLayerMie::GetQbk() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return Qbk_;  }  // ********************************************************************** //  // Returns previously calculated Qpr                                      //  // ********************************************************************** //  double MultiLayerMie::GetQpr() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return Qpr_;  }  // ********************************************************************** //  // Returns previously calculated assymetry factor                         //  // ********************************************************************** //  double MultiLayerMie::GetAsymmetryFactor() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return asymmetry_factor_;  }  // ********************************************************************** //  // Returns previously calculated Albedo                                   //  // ********************************************************************** //  double MultiLayerMie::GetAlbedo() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return albedo_;  }  // ********************************************************************** //  // Returns previously calculated S1                                       //  // ********************************************************************** //  std::vector<std::complex<double> > MultiLayerMie::GetS1() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return S1_;  }  // ********************************************************************** //  // Returns previously calculated S2                                       //  // ********************************************************************** //  std::vector<std::complex<double> > MultiLayerMie::GetS2() {    if (!isMieCalculated_)      throw std::invalid_argument("You should run calculations before result request!");    return S2_;  }  // ********************************************************************** //  // Modify scattering (theta) angles                                       //  // ********************************************************************** //  void MultiLayerMie::SetAngles(const std::vector<double>& angles) {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    theta_ = angles;  }  // ********************************************************************** //  // Modify size of all layers                                             //  // ********************************************************************** //  void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    size_param_.clear();    double prev_layer_size = 0.0;    for (auto curr_layer_size : layer_size) {      if (curr_layer_size <= 0.0)        throw std::invalid_argument("Size parameter should be positive!");      if (prev_layer_size > curr_layer_size)        throw std::invalid_argument          ("Size parameter for next layer should be larger than the previous one!");      prev_layer_size = curr_layer_size;      size_param_.push_back(curr_layer_size);    }  }  // ********************************************************************** //  // Modify refractive index of all layers                                  //  // ********************************************************************** //  void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    refractive_index_ = index;  }  // ********************************************************************** //  // Modify coordinates for field calculation                               //  // ********************************************************************** //  void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {    if (coords.size() != 3)      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");    coords_ = coords;  }  // ********************************************************************** //  // ********************************************************************** //  // ********************************************************************** //  void MultiLayerMie::SetPECLayer(int layer_position) {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    if (layer_position < 0 && layer_position != -1)      throw std::invalid_argument("Error! Layers are numbered from 0!");    PEC_layer_position_ = layer_position;  }  // ********************************************************************** //  // Set maximun number of terms to be used                                 //  // ********************************************************************** //  void MultiLayerMie::SetMaxTerms(int nmax) {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    nmax_preset_ = nmax;  }  // ********************************************************************** //  // ********************************************************************** //  // ********************************************************************** //  double MultiLayerMie::GetSizeParameter() {    if (size_param_.size() > 0)      return size_param_.back();    else      return 0;  }  // ********************************************************************** //  // Clear layer information                                                //  // ********************************************************************** //  void MultiLayerMie::ClearLayers() {    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    size_param_.clear();    refractive_index_.clear();  }  // ********************************************************************** //  // ********************************************************************** //  // ********************************************************************** //  //                         Computational core  // ********************************************************************** //  // ********************************************************************** //  // ********************************************************************** //  // ********************************************************************** //  // Calculate calcNstop - equation (17)                                    //  // ********************************************************************** //  void MultiLayerMie::calcNstop() {    const double& xL = size_param_.back();    if (xL <= 8) {      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);    } else if (xL <= 4200) {      nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);    } else {      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);    }  }  // ********************************************************************** //  // Maximum number of terms required for the calculation                   //  // ********************************************************************** //  void MultiLayerMie::calcNmax(unsigned int first_layer) {    int ri, riM1;    const std::vector<double>& x = size_param_;    const std::vector<std::complex<double> >& m = refractive_index_;    calcNstop();  // Set initial nmax_ value    for (unsigned int i = first_layer; i < x.size(); i++) {      if (static_cast<int>(i) > PEC_layer_position_)  // static_cast used to avoid warning        ri = round(std::abs(x[i]*m[i]));      else        ri = 0;      nmax_ = std::max(nmax_, ri);      // first layer is pec, if pec is present      if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))        riM1 = round(std::abs(x[i - 1]* m[i]));      else        riM1 = 0;      nmax_ = std::max(nmax_, riM1);    }    nmax_ += 15;  // Final nmax_ value  }  // ********************************************************************** //  // Calculate an - equation (5)                                            //  // ********************************************************************** //  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;    return Num/Denom;  }  // ********************************************************************** //  // Calculate bn - equation (6)                                            //  // ********************************************************************** //  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;    return Num/Denom;  }  // ********************************************************************** //  // Calculates S1 - equation (25a)                                         //  // ********************************************************************** //  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,                                              double Pi, double Tau) {    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);  }  // ********************************************************************** //  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //  // Pi and Tau)                                                            //  // ********************************************************************** //  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,                                              double Pi, double Tau) {    return calc_S1(n, an, bn, Tau, Pi);  }  //**********************************************************************************//  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //  // functions (D1 and D3) for a complex argument (z).                                //  // Equations (16a), (16b) and (18a) - (18d)                                         //  //                                                                                  //  // Input parameters:                                                                //  //   z: Complex argument to evaluate D1 and D3                                      //  //   nmax_: Maximum number of terms to calculate D1 and D3                          //  //                                                                                  //  // Output parameters:                                                               //  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //  //**********************************************************************************//  void MultiLayerMie::calcD1D3(const std::complex<double> z,                               std::vector<std::complex<double> >& D1,                               std::vector<std::complex<double> >& D3) {    // Downward recurrence for D1 - equations (16a) and (16b)    D1[nmax_] = std::complex<double>(0.0, 0.0);    const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;    for (int n = nmax_; n > 0; n--) {      D1[n - 1] = static_cast<double>(n)*zinv - 1.0/(D1[n] + static_cast<double>(n)*zinv);    }    if (std::abs(D1[0]) > 100000.0)      throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)    PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))                      *std::exp(-2.0*z.imag()));    D3[0] = std::complex<double>(0.0, 1.0);    for (int n = 1; n <= nmax_; n++) {      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])                                   *(static_cast<double>(n)*zinv - D3[n - 1]);      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];    }  }  //**********************************************************************************//  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //  // complex argument (z).                                                            //  // Equations (20a) - (21b)                                                          //  //                                                                                  //  // Input parameters:                                                                //  //   z: Complex argument to evaluate Psi and Zeta                                   //  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //  //                                                                                  //  // Output parameters:                                                               //  //   Psi, Zeta: Riccati-Bessel functions                                            //  //**********************************************************************************//  void MultiLayerMie::calcPsiZeta(std::complex<double> z,                                  std::vector<std::complex<double> >& Psi,                                  std::vector<std::complex<double> >& Zeta) {    std::complex<double> c_i(0.0, 1.0);    std::vector<std::complex<double> > D1(nmax_ + 1), D3(nmax_ + 1);    // First, calculate the logarithmic derivatives    calcD1D3(z, D1, D3);    // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)    Psi[0] = std::sin(z);    Zeta[0] = std::sin(z) - c_i*std::cos(z);    for (int n = 1; n <= nmax_; n++) {      Psi[n]  =  Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);      Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);    }  }  //**********************************************************************************//  // This function calculates Pi and Tau for a given value of cos(Theta).             //  // Equations (26a) - (26c)                                                          //  //                                                                                  //  // Input parameters:                                                                //  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //                                                                                  //  // Output parameters:                                                               //  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //  //**********************************************************************************//  void MultiLayerMie::calcPiTau(const double& costheta,                                std::vector<double>& Pi, std::vector<double>& Tau) {    int i;    //****************************************************//    // Equations (26a) - (26c)                            //    //****************************************************//    // Initialize Pi and Tau    Pi[0] = 1.0;  // n=1    Tau[0] = costheta;    // Calculate the actual values    if (nmax_ > 1) {      Pi[1] = 3*costheta*Pi[0]; //n=2      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];      for (i = 2; i < nmax_; i++) { //n=[3..nmax_]        Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;        Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];      }    }  }  // end of MultiLayerMie::calcPiTau(...)  //**********************************************************************************//  // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),        //  // required to calculate the near-field parameters.                                 //  //                                                                                  //  // Input parameters:                                                                //  //   Rho: Radial distance                                                           //  //   Phi: Azimuthal angle                                                           //  //   Theta: Polar angle                                                             //  //   rn: Either the spherical Ricatti-Bessel function of first or third kind        //  //   Dn: Logarithmic derivative of rn                                               //  //   Pi, Tau: Angular functions Pi and Tau                                          //  //   n: Order of vector spherical harmonics                                         //  //                                                                                  //  // Output parameters:                                                               //  //   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics                     //  //**********************************************************************************//  void MultiLayerMie::calcSpherHarm(const std::complex<double> Rho, const double Theta, const double Phi,                                    const std::complex<double>& rn, const std::complex<double>& Dn,                                    const double& Pi, const double& Tau, const double& n,                                    std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n,                                     std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {    // using eq 4.50 in BH    std::complex<double> c_zero(0.0, 0.0);    using std::sin;    using std::cos;    Mo1n[0] = c_zero;    Mo1n[1] = cos(Phi)*Pi*rn/Rho;    Mo1n[2] = -sin(Phi)*Tau*rn/Rho;    Me1n[0] = c_zero;    Me1n[1] = -sin(Phi)*Pi*rn/Rho;    Me1n[2] = -cos(Phi)*Tau*rn/Rho;    No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;    No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;    No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;    Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;    Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;    Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;  }  // end of MultiLayerMie::calcSpherHarm(...)  //**********************************************************************************//  // This function calculates the scattering coefficients required to calculate       //  // both the near- and far-field parameters.                                         //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send -1                          //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to -1 and the function will calculate it.             //  //                                                                                  //  // Output parameters:                                                               //  //   an, bn: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  void MultiLayerMie::ScattCoeffs() {    isScaCoeffsCalc_ = false;    const std::vector<double>& x = size_param_;    const std::vector<std::complex<double> >& m = refractive_index_;    const int& pl = PEC_layer_position_;    const int L = refractive_index_.size();    //************************************************************************//    // Calculate the index of the first layer. It can be either 0 (default)   //    // or the index of the outermost PEC layer. In the latter case all layers //    // below the PEC are discarded.                                           //    // ***********************************************************************//    int fl = (pl > 0) ? pl : 0;    if (nmax_preset_ <= 0) calcNmax(fl);    else nmax_ = nmax_preset_;    std::complex<double> z1, z2;    //**************************************************************************//    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //    // means that index = layer number - 1 or index = n - 1. The only exception //    // are the arrays for representing D1, D3 and Q because they need a value   //    // for the index 0 (zero), hence it is important to consider this shift     //    // between different arrays. The change was done to optimize memory usage.  //    //**************************************************************************//    // Allocate memory to the arrays    std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);    std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);    for (int l = 0; l < L; l++) {      Q[l].resize(nmax_ + 1);      Ha[l].resize(nmax_);      Hb[l].resize(nmax_);    }    an_.resize(nmax_);    bn_.resize(nmax_);    PsiZeta_.resize(nmax_ + 1);    std::vector<std::complex<double> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);    //*************************************************//    // Calculate D1 and D3 for z1 in the first layer   //    //*************************************************//    if (fl == pl) {  // PEC layer      for (int n = 0; n <= nmax_; n++) {        D1_mlxl[n] = std::complex<double>(0.0, - 1.0);        D3_mlxl[n] = std::complex<double>(0.0, 1.0);      }    } else { // Regular layer      z1 = x[fl]* m[fl];      // Calculate D1 and D3      calcD1D3(z1, D1_mlxl, D3_mlxl);    }    //******************************************************************//    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //    //******************************************************************//    for (int n = 0; n < nmax_; n++) {      Ha[fl][n] = D1_mlxl[n + 1];      Hb[fl][n] = D1_mlxl[n + 1];    }    //*****************************************************//    // Iteration from the second layer to the last one (L) //    //*****************************************************//    std::complex<double> Temp, Num, Denom;    std::complex<double> G1, G2;    for (int l = fl + 1; l < L; l++) {      //************************************************************//      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //      //************************************************************//      z1 = x[l]*m[l];      z2 = x[l - 1]*m[l];      //Calculate D1 and D3 for z1      calcD1D3(z1, D1_mlxl, D3_mlxl);      //Calculate D1 and D3 for z2      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);      //*************************************************//      //Calculate Q, Ha and Hb in the layers fl + 1..L   //      //*************************************************//      // Upward recurrence for Q - equations (19a) and (19b)      Num = std::exp(-2.0*(z1.imag() - z2.imag()))           *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));      Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));      Q[l][0] = Num/Denom;      for (int n = 1; n <= nmax_; n++) {        Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);        Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;      }      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)      for (int n = 1; n <= nmax_; n++) {        //Ha        if ((l - 1) == pl) { // The layer below the current one is a PEC layer          G1 = -D1_mlxlM1[n];          G2 = -D3_mlxlM1[n];        } else {          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);        }  // end of if PEC        Temp = Q[l][n]*G1;        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);        Denom = G2 - Temp;        Ha[l][n - 1] = Num/Denom;        //Hb        if ((l - 1) == pl) { // The layer below the current one is a PEC layer          G1 = Hb[l - 1][n - 1];          G2 = Hb[l - 1][n - 1];        } else {          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);        }  // end of if PEC        Temp = Q[l][n]*G1;        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);        Denom = (G2- Temp);        Hb[l][n - 1] = (Num/ Denom);      }  // end of for Ha and Hb terms    }  // end of for layers iteration    //**************************************//    //Calculate Psi and Zeta for XL         //    //**************************************//    // Calculate PsiXL and ZetaXL    calcPsiZeta(x[L - 1], PsiXL, ZetaXL);    //*********************************************************************//    // Finally, we calculate the scattering coefficients (an and bn) and   //    // the angular functions (Pi and Tau). Note that for these arrays the  //    // first layer is 0 (zero), in future versions all arrays will follow  //    // this convention to save memory. (13 Nov, 2014)                      //    //*********************************************************************//    for (int n = 0; n < nmax_; n++) {      //********************************************************************//      //Expressions for calculating an and bn coefficients are not valid if //      //there is only one PEC layer (ie, for a simple PEC sphere).          //      //********************************************************************//      if (pl < (L - 1)) {        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);      } else {        an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];      }    }  // end of for an and bn terms    isScaCoeffsCalc_ = true;  }  // end of MultiLayerMie::ScattCoeffs(...)  //**********************************************************************************//  // This function calculates the actual scattering parameters and amplitudes         //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send -1                          //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nTheta: Number of scattering angles                                            //  //   Theta: Array containing all the scattering angles where the scattering         //  //          amplitudes will be calculated                                           //  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to -1 and the function will calculate it              //  //                                                                                  //  // Output parameters:                                                               //  //   Qext: Efficiency factor for extinction                                         //  //   Qsca: Efficiency factor for scattering                                         //  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //  //   Qbk: Efficiency factor for backscattering                                      //  //   Qpr: Efficiency factor for the radiation pressure                              //  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //  //   S1, S2: Complex scattering amplitudes                                          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  void MultiLayerMie::RunMieCalculation() {    if (size_param_.size() != refractive_index_.size())      throw std::invalid_argument("Each size parameter should have only one index!");    if (size_param_.size() == 0)      throw std::invalid_argument("Initialize model first!");    const std::vector<double>& x = size_param_;    isExpCoeffsCalc_ = false;    isScaCoeffsCalc_ = false;    isMieCalculated_ = false;    // Calculate scattering coefficients    ScattCoeffs();    if (!isScaCoeffsCalc_) // TODO seems to be unreachable      throw std::invalid_argument("Calculation of scattering coefficients failed!");    // Initialize the scattering parameters    Qext_ = 0.0;    Qsca_ = 0.0;    Qabs_ = 0.0;    Qbk_ = 0.0;    Qpr_ = 0.0;    asymmetry_factor_ = 0.0;    albedo_ = 0.0;    // Initialize the scattering amplitudes    std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));    S1_.swap(tmp1);    S2_ = S1_;    std::vector<double> Pi(nmax_), Tau(nmax_);    std::complex<double> Qbktmp(0.0, 0.0);    std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);    // By using downward recurrence we avoid loss of precision due to float rounding errors    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html    //      http://en.wikipedia.org/wiki/Loss_of_significance    for (int i = nmax_ - 2; i >= 0; i--) {      const int n = i + 1;      // Equation (27)      Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());      // Equation (28)      Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()                            + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());      // Equation (29)      Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())               + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());      // Equation (33)      Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);      // Calculate the scattering amplitudes (S1 and S2)    //      // Equations (25a) - (25b)                            //      for (unsigned int t = 0; t < theta_.size(); t++) {        calcPiTau(std::cos(theta_[t]), Pi, Tau);        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);      }    }    double x2 = pow2(x.back());    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)    Qabs_ = Qext_ - Qsca_;                                  // Equation (30)    albedo_ = Qsca_/Qext_;                                  // Equation (31)    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;               // Equation (32)    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)    isMieCalculated_ = true;  }  //**********************************************************************************//  // This function calculates the expansion coefficients inside the particle,         //  // required to calculate the near-field parameters.                                 //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send -1                          //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to -1 and the function will calculate it.             //  //                                                                                  //  // Output parameters:                                                               //  //   aln, bln, cln, dln: Complex scattering amplitudes inside the particle          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  void MultiLayerMie::ExpanCoeffs() {    if (!isScaCoeffsCalc_)      throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!");    isExpCoeffsCalc_ = false;    std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);    const int L = refractive_index_.size();    aln_.resize(L + 1);    bln_.resize(L + 1);    cln_.resize(L + 1);    dln_.resize(L + 1);    for (int l = 0; l <= L; l++) {      aln_[l].resize(nmax_);      bln_[l].resize(nmax_);      cln_[l].resize(nmax_);      dln_[l].resize(nmax_);    }    // Yang, paragraph under eq. A3    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...    for (int n = 0; n < nmax_; n++) {      aln_[L][n] = an_[n];      bln_[L][n] = bn_[n];      cln_[L][n] = c_one;      dln_[L][n] = c_one;    }    std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);    std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);    std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;    auto& m = refractive_index_;    std::vector< std::complex<double> > m1(L);    for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];    m1[L - 1] = std::complex<double> (1.0, 0.0);    std::complex<double> z, z1;    for (int l = L - 1; l >= 0; l--) {      z = size_param_[l]*m[l];      z1 = size_param_[l]*m1[l];      calcD1D3(z, D1z, D3z);      calcD1D3(z1, D1z1, D3z1);      calcPsiZeta(z, Psiz, Zetaz);      calcPsiZeta(z1, Psiz1, Zetaz1);      for (int n = 0; n < nmax_; n++) {        int n1 = n + 1;        denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);        denomPsi  =  Psiz[n1]*(D1z[n1] - D3z[n1]);        T1 =  aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];        T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];        T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];        T4 =  cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];        // aln        aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;        // bln        bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;        // cln        cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;        // dln        dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;      }  // end of all n    }  // end of all l    // Check the result and change  aln_[0][n] and aln_[0][n] for exact zero    for (int n = 0; n < nmax_; ++n) {      if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;      else throw std::invalid_argument("Unstable calculation of aln_[0][n]!");      if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;      else throw std::invalid_argument("Unstable calculation of bln_[0][n]!");    }    isExpCoeffsCalc_ = true;  }  // end of   void MultiLayerMie::ExpanCoeffs()  //**********************************************************************************//  // This function calculates the electric (E) and magnetic (H) fields inside and     //  // around the particle.                                                             //  //                                                                                  //  // Input parameters (coordinates of the point):                                     //  //   Rho: Radial distance                                                           //  //   Phi: Azimuthal angle                                                           //  //   Theta: Polar angle                                                             //  //                                                                                  //  // Output parameters:                                                               //  //   E, H: Complex electric and magnetic fields                                     //  //**********************************************************************************//  void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi,                                std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {    std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);    std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation    std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);    std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);    std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);    std::vector<double> Pi(nmax_), Tau(nmax_);    int l = 0;  // Layer number    std::complex<double> ml;    // Initialize E and H    for (int i = 0; i < 3; i++) {      E[i] = c_zero;      H[i] = c_zero;    }        if (Rho > size_param_.back()) {      l = size_param_.size();      ml = c_one;    } else {      for (int i = size_param_.size() - 1; i >= 0 ; i--) {        if (Rho <= size_param_[i]) {          l = i;        }      }      ml = refractive_index_[l];    }    // Calculate logarithmic derivative of the Ricatti-Bessel functions    calcD1D3(Rho*ml, D1n, D3n);    // Calculate Ricatti-Bessel functions    calcPsiZeta(Rho*ml, Psi, Zeta);    // Calculate angular functions Pi and Tau    calcPiTau(std::cos(Theta), Pi, Tau);    for (int n = nmax_ - 2; n >= 0; n--) {      int n1 = n + 1;      double rn = static_cast<double>(n1);      // using BH 4.12 and 4.50      calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);      calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);      // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720      std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);      for (int i = 0; i < 3; i++) {        // electric field E [V m - 1] = EF*E0        E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]              + c_i*aln_[l][n]*N3e1n[i] -     bln_[l][n]*M3o1n[i]);        H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]              +  c_i*bln_[l][n]*N3o1n[i] +     aln_[l][n]*M3e1n[i]);      }    }  // end of for all n    // magnetic field    std::complex<double> hffact = ml/(cc_*mu_);    for (int i = 0; i < 3; i++) {      H[i] = hffact*H[i];    }   }  // end of MultiLayerMie::calcField(...)  //**********************************************************************************//  // This function calculates complex electric and magnetic field in the surroundings //  // and inside the particle.                                                         //  //                                                                                  //  // Input parameters:                                                                //  //   L: Number of layers                                                            //  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //  //   x: Array containing the size parameters of the layers [0..L-1]                 //  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //  //   nmax: Maximum number of multipolar expansion terms to be used for the          //  //         calculations. Only use it if you know what you are doing, otherwise      //  //         set this parameter to 0 (zero) and the function will calculate it.       //  //   ncoord: Number of coordinate points                                            //  //   Coords: Array containing all coordinates where the complex electric and        //  //           magnetic fields will be calculated                                     //  //                                                                                  //  // Output parameters:                                                               //  //   E, H: Complex electric and magnetic field at the provided coordinates          //  //                                                                                  //  // Return value:                                                                    //  //   Number of multipolar expansion terms used for the calculations                 //  //**********************************************************************************//  void MultiLayerMie::RunFieldCalculation() {    double Rho, Theta, Phi;    // Calculate scattering coefficients an_ and bn_    ScattCoeffs();    // Calculate expansion coefficients aln_,  bln_, cln_, and dln_    ExpanCoeffs();    long total_points = coords_[0].size();    E_.resize(total_points);    H_.resize(total_points);    for (auto& f : E_) f.resize(3);    for (auto& f : H_) f.resize(3);    for (int point = 0; point < total_points; point++) {      const double& Xp = coords_[0][point];      const double& Yp = coords_[1][point];      const double& Zp = coords_[2][point];      // Convert to spherical coordinates      Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));      // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems      Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;      // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems      if (Xp == 0.0)        Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;      else        Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));      // Avoid convergence problems due to Rho too small      if (Rho < 1e-5) Rho = 1e-5;      //*******************************************************//      // external scattering field = incident + scattered      //      // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //      // assume: medium is non-absorbing; refim = 0; Uabs = 0  //      //*******************************************************//      // This array contains the fields in spherical coordinates      std::vector<std::complex<double> > Es(3), Hs(3);      // Do the actual calculation of electric and magnetic field      calcField(Rho, Theta, Phi, Es, Hs);      { //Now, convert the fields back to cartesian coordinates        using std::sin;        using std::cos;        E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];        E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];        E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];        H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];        H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];        H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];      }    }  // end of for all field coordinates  }  //  end of MultiLayerMie::RunFieldCalculation()}  // end of namespace nmie
 |