1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141 |
- //**********************************************************************************//
- // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This library implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include <math.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include "ucomplex.h"
- #include "nmie.h"
- #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
- complex C_ZERO = {0.0, 0.0};
- complex C_ONE = {1.0, 0.0};
- complex C_I = {0.0, 1.0};
- int firstLayer(int L, int pl) {
- if (pl >= 0) {
- return pl;
- } else {
- return 0;
- }
- }
- // Calculate Nstop - equation (17)
- int Nstop(double xL) {
- int result;
- if (xL <= 8) {
- result = round(xL + 4*pow(xL, 1/3) + 1);
- } else if (xL <= 4200) {
- result = round(xL + 4.05*pow(xL, 1/3) + 2);
- } else {
- result = round(xL + 4*pow(xL, 1/3) + 2);
- }
- return result;
- }
- int Nmax(int L, int fl, int pl, double x[], complex m[]) {
- int i, result, ri, riM1;
- result = Nstop(x[L - 1]);
- for (i = fl; i < L; i++) {
- if (i > pl) {
- ri = round(Cabs(RCmul(x[i], m[i])));
- } else {
- ri = 0;
- }
- if (result < ri) {
- result = ri;
- }
- if ((i > fl) && ((i - 1) > pl)) {
- riM1 = round(Cabs(RCmul(x[i - 1], m[i])));
- } else {
- riM1 = 0;
- }
- if (result < riM1) {
- result = riM1;
- }
- }
- return result + 15;
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel functions (jn and hn) for a given //
- // value of r. //
- // //
- // Input parameters: //
- // r: Real argument to evaluate jn and hn //
- // n_max: Maximum number of terms to calculate jn and hn //
- // //
- // Output parameters: //
- // jn, hn: Spherical Bessel functions (double) //
- //**********************************************************************************//
- void sphericalBessel(double r, int n_max, double **j, double **h) {
- int n;
- (*j)[0] = sin(r)/r;
- (*j)[1] = sin(r)/r/r - cos(r)/r;
- (*h)[0] = -cos(r)/r;
- (*h)[1] = -cos(r)/r/r - sin(r)/r;
- for (n = 2; n < n_max; n++) {
- (*j)[n] = (n + n + 1)*(*j)[n - 1]/r - (*j)[n - 2];
- (*h)[n] = (n + n + 1)*(*h)[n - 1]/r - (*h)[n - 2];
- }
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel functions (jn and hn) for a given //
- // value of z. //
- // //
- // Input parameters: //
- // z: Real argument to evaluate jn and hn //
- // n_max: Maximum number of terms to calculate jn and hn //
- // //
- // Output parameters: //
- // jn, hn: Spherical Bessel functions (complex) //
- //**********************************************************************************//
- void CsphericalBessel(complex z, int n_max, complex **j, complex **h) {
- int n;
- (*j)[0] = Cdiv(Csin(z), z);
- (*j)[1] = Csub(Cdiv(Cdiv(Csin(z), z), z), Cdiv(Ccos(z), z));
- (*h)[0] = Csub(C_ZERO, Cdiv(Ccos(z), z));
- (*h)[1] = Csub(C_ZERO, Cadd(Cdiv(Cdiv(Ccos(z), z), z), Cdiv(Csin(z), z)));
- for (n = 2; n < n_max; n++) {
- (*j)[n] = Csub(RCmul(n + n + 1, Cdiv((*j)[n - 1], z)), (*j)[n - 2]);
- (*h)[n] = Csub(RCmul(n + n + 1, Cdiv((*h)[n - 1], z)), (*h)[n - 2]);
- }
- }
- // Calculate an - equation (5)
- complex calc_an(int n, double XL, complex Ha, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) {
- complex Num = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1);
- complex Denom = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1);
- return Cdiv(Num, Denom);
- }
- // Calculate bn - equation (6)
- complex calc_bn(int n, double XL, complex Hb, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) {
- complex Num = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1);
- complex Denom = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1);
- return Cdiv(Num, Denom);
- }
- // Calculates S1_n - equation (25a)
- complex calc_S1_n(int n, complex an, complex bn, double Pin, double Taun) {
- return RCmul((double)(n + n + 1)/(double)(n*n + n), Cadd(RCmul(Pin, an), RCmul(Taun, bn)));
- }
- // Calculates S2_n - equation (25b) (it's the same as (25a), just switches Pin and Taun)
- complex calc_S2_n(int n, complex an, complex bn, double Pin, double Taun) {
- return calc_S1_n(n, an, bn, Taun, Pin);
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // given value of z. //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate Psi and Zeta //
- // n_max: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- void calcPsiZeta(complex z, int n_max, complex *D1, complex *D3, complex **Psi, complex **Zeta) {
- int n;
- complex cn;
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
- (*Psi)[0] = Complex(sin(z.r), 0);
- (*Zeta)[0] = Complex(sin(z.r), -cos(z.r));
- for (n = 1; n <= n_max; n++) {
- cn = Complex(n, 0);
- (*Psi)[n] = Cmul((*Psi)[n - 1], Csub(Cdiv(cn, z), D1[n - 1]));
- (*Zeta)[n] = Cmul((*Zeta)[n - 1], Csub(Cdiv(cn, z), D3[n - 1]));
- }
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a given value of z. //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // n_max: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- void calcD1D3(complex z, int n_max, complex **D1, complex **D3) {
- int n;
- complex cn;
- complex *PsiZeta = (complex *) malloc((n_max + 1)*sizeof(complex));
- // Downward recurrence for D1 - equations (16a) and (16b)
- (*D1)[n_max] = C_ZERO;
- for (n = n_max; n > 0; n--) {
- cn = Complex(n, 0);
- (*D1)[n - 1] = Csub(Cdiv(cn, z), Cdiv(C_ONE, Cadd((*D1)[n], Cdiv(cn, z))));
- }
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta[0] = RCmul(0.5, Csub(C_ONE, Cmul(Complex(cos(2*z.r), sin(2*z.r)), Complex(exp(-2*z.i), 0))));
- (*D3)[0] = C_I;
- for (n = 1; n <= n_max; n++) {
- cn = Complex(n, 0);
- PsiZeta[n] = Cmul(PsiZeta[n - 1], Cmul(Csub(Cdiv(cn, z), (*D1)[n - 1]), Csub(Cdiv(cn, z), (*D3)[n - 1])));
- (*D3)[n] = Cadd((*D1)[n], Cdiv(C_I, PsiZeta[n]));
- }
- free(PsiZeta);
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for all values of Theta. //
- // //
- // Input parameters: //
- // n_max: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- void calcPiTau(int n_max, int nTheta, double Theta[], double ***Pi, double ***Tau) {
- int n, t;
- for (n = 0; n < n_max; n++) {
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- if (n == 0) {
- // Initialize Pi and Tau
- (*Pi)[n][t] = 1.0;
- (*Tau)[n][t] = (n + 1)*cos(Theta[t]);
- } else {
- // Calculate the actual values
- (*Pi)[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t]/n)
- : (((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t] - (n + 1)*(*Pi)[n - 2][t])/n));
- (*Tau)[n][t] = (n + 1)*cos(Theta[t])*(*Pi)[n][t] - (n + 2)*(*Pi)[n - 1][t];
- }
- }
- }
- }
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int ScattCoeff(int L, int pl, double x[], complex m[], int n_max, complex **an, complex **bn){
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- //************************************************************************//
- int fl = firstLayer(L, pl);
- if (n_max <= 0) {
- n_max = Nmax(L, fl, pl, x, m);
- }
-
- complex z1, z2, cn;
- complex Num, Denom;
- complex G1, G2;
- complex Temp;
- double Tmp;
- int n, l, t;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *));
- complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
- complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *));
- complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
- complex **Q = (complex **) malloc(L*sizeof(complex *));
- complex **Ha = (complex **) malloc(L*sizeof(complex *));
- complex **Hb = (complex **) malloc(L*sizeof(complex *));
- for (l = 0; l < L; l++) {
- D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- Ha[l] = (complex *) malloc(n_max*sizeof(complex));
- Hb[l] = (complex *) malloc(n_max*sizeof(complex));
- }
- (*an) = (complex *) malloc(n_max*sizeof(complex));
- (*bn) = (complex *) malloc(n_max*sizeof(complex));
- complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex));
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (n = 0; n <= n_max; n++) {
- D1_mlxl[fl][n] = Complex(0, -1);
- D3_mlxl[fl][n] = C_I;
- }
- } else { // Regular layer
- z1 = RCmul(x[fl], m[fl]);
- // Calculate D1 and D3
- calcD1D3(z1, n_max, &(D1_mlxl[fl]), &(D3_mlxl[fl]));
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (n = 0; n < n_max; n++) {
- Ha[fl][n] = D1_mlxl[fl][n + 1];
- Hb[fl][n] = D1_mlxl[fl][n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- for (l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
- //************************************************************//
- z1 = RCmul(x[l], m[l]);
- z2 = RCmul(x[l - 1], m[l]);
- //Calculate D1 and D3 for z1
- calcD1D3(z1, n_max, &(D1_mlxl[l]), &(D3_mlxl[l]));
- //Calculate D1 and D3 for z2
- calcD1D3(z2, n_max, &(D1_mlxlM1[l]), &(D3_mlxlM1[l]));
- //*********************************************//
- //Calculate Q, Ha and Hb in the layers fl+1..L //
- //*********************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r)));
- Denom = Complex(cos(-2*z1.r) - exp(-2*z1.i), sin(-2*z1.r));
- Q[l][0] = Cdiv(Num, Denom);
- for (n = 1; n <= n_max; n++) {
- cn = Complex(n, 0);
- Num = Cmul(Cadd(Cmul(z1, D1_mlxl[l][n]), cn), Csub(cn, Cmul(z1, D3_mlxl[l][n - 1])));
- Denom = Cmul(Cadd(Cmul(z2, D1_mlxlM1[l][n]), cn), Csub(cn, Cmul(z2, D3_mlxlM1[l][n - 1])));
- Q[l][n] = Cdiv(Cmul(RCmul((x[l - 1]*x[l - 1])/(x[l]*x[l]), Q[l][n - 1]), Num), Denom);
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (n = 1; n <= n_max; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = RCmul(-1.0, D1_mlxlM1[l][n]);
- G2 = RCmul(-1.0, D3_mlxlM1[l][n]);
- } else {
- G1 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D1_mlxlM1[l][n]));
- G2 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D3_mlxlM1[l][n]));
- }
- Temp = Cmul(Q[l][n], G1);
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
- Denom = Csub(G2, Temp);
- Ha[l][n - 1] = Cdiv(Num, Denom);
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D1_mlxlM1[l][n]));
- G2 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D3_mlxlM1[l][n]));
- }
- Temp = Cmul(Q[l][n], G1);
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
- Denom = Csub(G2, Temp);
- Hb[l][n - 1] = Cdiv(Num, Denom);
- }
- }
- //**************************************//
- //Calculate D1, D3, Psi and Zeta for XL //
- //**************************************//
- z1 = Complex(x[L - 1], 0);
- // Calculate D1XL and D3XL
- calcD1D3(z1, n_max, &D1XL, &D3XL);
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(z1, n_max, D1XL, D3XL, &PsiXL, &ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (n = 0; n < n_max; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- (*an)[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- (*bn)[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- (*an)[n] = calc_an(n + 1, x[L - 1], C_ZERO, C_ONE, PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- (*bn)[n] = Cdiv(PsiXL[n + 1], ZetaXL[n + 1]);
- }
- }
- // Free the memory used for the arrays
- for (l = 0; l < L; l++) {
- free(D1_mlxl[l]);
- free(D1_mlxlM1[l]);
- free(D3_mlxl[l]);
- free(D3_mlxlM1[l]);
- free(Q[l]);
- free(Ha[l]);
- free(Hb[l]);
- }
- free(D1_mlxl);
- free(D1_mlxlM1);
- free(D3_mlxl);
- free(D3_mlxlM1);
- free(Q);
- free(Ha);
- free(Hb);
- free(D1XL);
- free(D3XL);
- free(PsiXL);
- free(ZetaXL);
- return n_max;
- }
- //**********************************************************************************//
- //**********************************************************************************//
- //**********************************************************************************//
- int ScattCoeff_std(double x[], complex m[], complex **an, complex **bn,
- int L, int pl, std::vector<double> x_std,
- std::vector<std::complex<double> > m_std, int n_max,
- std::vector< std::complex<double> > an_std,
- std::vector< std::complex<double> > bn_std){
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- //************************************************************************//
- int fl = firstLayer(L, pl);
- if (n_max <= 0) {
- n_max = Nmax(L, fl, pl, x, m);
- }
-
- complex z1, z2, cn;
- complex Num, Denom;
- complex G1, G2;
- complex Temp;
- double Tmp;
- int n, l, t;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *));
- complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
- complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *));
- complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
- complex **Q = (complex **) malloc(L*sizeof(complex *));
- complex **Ha = (complex **) malloc(L*sizeof(complex *));
- complex **Hb = (complex **) malloc(L*sizeof(complex *));
- for (l = 0; l < L; l++) {
- D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
- Ha[l] = (complex *) malloc(n_max*sizeof(complex));
- Hb[l] = (complex *) malloc(n_max*sizeof(complex));
- }
- (*an) = (complex *) malloc(n_max*sizeof(complex));
- (*bn) = (complex *) malloc(n_max*sizeof(complex));
- complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex));
- complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex));
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (n = 0; n <= n_max; n++) {
- D1_mlxl[fl][n] = Complex(0, -1);
- D3_mlxl[fl][n] = C_I;
- }
- } else { // Regular layer
- z1 = RCmul(x[fl], m[fl]);
- // Calculate D1 and D3
- calcD1D3(z1, n_max, &(D1_mlxl[fl]), &(D3_mlxl[fl]));
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (n = 0; n < n_max; n++) {
- Ha[fl][n] = D1_mlxl[fl][n + 1];
- Hb[fl][n] = D1_mlxl[fl][n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- for (l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
- //************************************************************//
- z1 = RCmul(x[l], m[l]);
- z2 = RCmul(x[l - 1], m[l]);
- //Calculate D1 and D3 for z1
- calcD1D3(z1, n_max, &(D1_mlxl[l]), &(D3_mlxl[l]));
- //Calculate D1 and D3 for z2
- calcD1D3(z2, n_max, &(D1_mlxlM1[l]), &(D3_mlxlM1[l]));
- //*********************************************//
- //Calculate Q, Ha and Hb in the layers fl+1..L //
- //*********************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r)));
- Denom = Complex(cos(-2*z1.r) - exp(-2*z1.i), sin(-2*z1.r));
- Q[l][0] = Cdiv(Num, Denom);
- for (n = 1; n <= n_max; n++) {
- cn = Complex(n, 0);
- Num = Cmul(Cadd(Cmul(z1, D1_mlxl[l][n]), cn), Csub(cn, Cmul(z1, D3_mlxl[l][n - 1])));
- Denom = Cmul(Cadd(Cmul(z2, D1_mlxlM1[l][n]), cn), Csub(cn, Cmul(z2, D3_mlxlM1[l][n - 1])));
- Q[l][n] = Cdiv(Cmul(RCmul((x[l - 1]*x[l - 1])/(x[l]*x[l]), Q[l][n - 1]), Num), Denom);
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (n = 1; n <= n_max; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = RCmul(-1.0, D1_mlxlM1[l][n]);
- G2 = RCmul(-1.0, D3_mlxlM1[l][n]);
- } else {
- G1 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D1_mlxlM1[l][n]));
- G2 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D3_mlxlM1[l][n]));
- }
- Temp = Cmul(Q[l][n], G1);
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
- Denom = Csub(G2, Temp);
- Ha[l][n - 1] = Cdiv(Num, Denom);
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D1_mlxlM1[l][n]));
- G2 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D3_mlxlM1[l][n]));
- }
- Temp = Cmul(Q[l][n], G1);
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
- Denom = Csub(G2, Temp);
- Hb[l][n - 1] = Cdiv(Num, Denom);
- }
- }
- //**************************************//
- //Calculate D1, D3, Psi and Zeta for XL //
- //**************************************//
- z1 = Complex(x[L - 1], 0);
- // Calculate D1XL and D3XL
- calcD1D3(z1, n_max, &D1XL, &D3XL);
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(z1, n_max, D1XL, D3XL, &PsiXL, &ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (n = 0; n < n_max; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- (*an)[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- (*bn)[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- (*an)[n] = calc_an(n + 1, x[L - 1], C_ZERO, C_ONE, PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- (*bn)[n] = Cdiv(PsiXL[n + 1], ZetaXL[n + 1]);
- }
- }
- // Free the memory used for the arrays
- for (l = 0; l < L; l++) {
- free(D1_mlxl[l]);
- free(D1_mlxlM1[l]);
- free(D3_mlxl[l]);
- free(D3_mlxlM1[l]);
- free(Q[l]);
- free(Ha[l]);
- free(Hb[l]);
- }
- free(D1_mlxl);
- free(D1_mlxlM1);
- free(D3_mlxl);
- free(D3_mlxlM1);
- free(Q);
- free(Ha);
- free(Hb);
- free(D1XL);
- free(D3XL);
- free(PsiXL);
- free(ZetaXL);
- return n_max;
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the function 'nMieScatt' with fewer //
- // parameters, it is here mainly for compatibility with older versions of the //
- // program. Also, you can use it if you neither have a PEC layer nor want to define //
- // any limit for the maximum number of terms. //
- //**********************************************************************************//
- int nMie(int L, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
- return nMieScatt(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- int nMie_std(double x[], complex m[], double Theta[], complex S1[], complex S2[],
- int L, std::vector<double> &x_std, std::vector<std::complex<double> > &m_std, int nTheta, std::vector<double> &Theta_std, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector< std::complex<double> > &S1_std, std::vector< std::complex<double> > &S2_std) {
- return nMieScatt_std(x, m, Theta, S1, S2, L, -1, x_std, m_std, nTheta, Theta_std, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1_std, S2_std);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the function 'nMieScatt' with fewer //
- // parameters, it is useful if you want to include a PEC layer but not a limit //
- // for the maximum number of terms. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMiePEC(int L, int pl, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
- return nMieScatt(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the function 'nMieScatt' with fewer //
- // parameters, it is useful if you want to include a limit for the maximum number //
- // of terms but not a PEC layer. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMieMax(int L, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
- return nMieScatt(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
- int i, n, t;
- double **Pi, **Tau;
- complex *an, *bn;
- complex Qbktmp;
- n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
- Pi = (double **) malloc(n_max*sizeof(double *));
- Tau = (double **) malloc(n_max*sizeof(double *));
- for (n = 0; n < n_max; n++) {
- Pi[n] = (double *) malloc(nTheta*sizeof(double));
- Tau[n] = (double *) malloc(nTheta*sizeof(double));
- }
- calcPiTau(n_max, nTheta, Theta, &Pi, &Tau);
- double x2 = x[L - 1]*x[L - 1];
- // Initialize the scattering parameters
- *Qext = 0;
- *Qsca = 0;
- *Qabs = 0;
- *Qbk = 0;
- Qbktmp = C_ZERO;
- *Qpr = 0;
- *g = 0;
- *Albedo = 0;
- // Initialize the scattering amplitudes
- for (t = 0; t < nTheta; t++) {
- S1[t] = C_ZERO;
- S2[t] = C_ZERO;
- }
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (i = n_max - 2; i >= 0; i--) {
- n = i + 1;
- // Equation (27)
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
- // Equation (28)
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
- // Equation (29)
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
- // Equation (33)
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- }
- }
- *Qext = 2*(*Qext)/x2; // Equation (27)
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
- *Qabs = *Qext - *Qsca; // Equation (30)
- *Albedo = *Qsca / *Qext; // Equation (31)
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
- *Qbk = (Qbktmp.r*Qbktmp.r + Qbktmp.i*Qbktmp.i)/x2; // Equation (33)
- // Free the memory used for the arrays
- for (n = 0; n < n_max; n++) {
- free(Pi[n]);
- free(Tau[n]);
- }
- free(Pi);
- free(Tau);
- free(an);
- free(bn);
- return n_max;
- }
- int nMieScatt_std(double x[], complex m[], double Theta[], complex S1[], complex S2[],
- int L, int pl,
- std::vector<double> &x_std, std::vector<std::complex<double> > &m_std,
- int nTheta, std::vector<double> &Theta_std,
- int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk,
- double *Qpr, double *g, double *Albedo,
- std::vector< std::complex<double> > &S1_std,
- std::vector< std::complex<double> > &S2_std) {
- int i, n, t;
- double **Pi, **Tau;
- std::vector< std::vector<double> > Pi_std, Tau_std;
- complex *an, *bn;
- std::vector< std::complex<double> > an_std, bn_std;
- complex Qbktmp;
- std::complex<double> Qbktmp_std;
- {
- int tmp_n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
- n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
- }
- Pi = (double **) malloc(n_max*sizeof(double *));
- Tau = (double **) malloc(n_max*sizeof(double *));
- for (n = 0; n < n_max; n++) {
- Pi[n] = (double *) malloc(nTheta*sizeof(double));
- Tau[n] = (double *) malloc(nTheta*sizeof(double));
- }
- calcPiTau(n_max, nTheta, Theta, &Pi, &Tau);
- double x2 = x[L - 1]*x[L - 1];
- // Initialize the scattering parameters
- *Qext = 0;
- *Qsca = 0;
- *Qabs = 0;
- *Qbk = 0;
- Qbktmp = C_ZERO;
- *Qpr = 0;
- *g = 0;
- *Albedo = 0;
- // Initialize the scattering amplitudes
- for (t = 0; t < nTheta; t++) {
- S1[t] = C_ZERO;
- S2[t] = C_ZERO;
- }
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (i = n_max - 2; i >= 0; i--) {
- n = i + 1;
- // Equation (27)
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
- // Equation (28)
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
- // Equation (29)
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
- // Equation (33)
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- }
- }
- *Qext = 2*(*Qext)/x2; // Equation (27)
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
- *Qabs = *Qext - *Qsca; // Equation (30)
- *Albedo = *Qsca / *Qext; // Equation (31)
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
- *Qbk = (Qbktmp.r*Qbktmp.r + Qbktmp.i*Qbktmp.i)/x2; // Equation (33)
- // Free the memory used for the arrays
- for (n = 0; n < n_max; n++) {
- free(Pi[n]);
- free(Tau[n]);
- }
- free(Pi);
- free(Tau);
- free(an);
- free(bn);
- return n_max;
- }
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside (TODO) the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to 0 (zero) and the function will calculate it. //
- // nCoords: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, double Xp[], double Yp[], double Zp[], complex E[], complex H[]){
- int i, n, c;
- double **Pi, **Tau;
- complex *an, *bn;
- double *Rho = (double *) malloc(nCoords*sizeof(double));
- double *Phi = (double *) malloc(nCoords*sizeof(double));
- double *Theta = (double *) malloc(nCoords*sizeof(double));
- for (c = 0; c < nCoords; c++) {
- Rho[c] = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
- if (Rho[c] < 1e-3) {
- Rho[c] = 1e-3;
- }
- Phi[c] = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
- Theta[c] = acos(Xp[c]/Rho[c]);
- }
- n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
- Pi = (double **) malloc(n_max*sizeof(double *));
- Tau = (double **) malloc(n_max*sizeof(double *));
- for (n = 0; n < n_max; n++) {
- Pi[n] = (double *) malloc(nCoords*sizeof(double));
- Tau[n] = (double *) malloc(nCoords*sizeof(double));
- }
- calcPiTau(n_max, nCoords, Theta, &Pi, &Tau);
- double x2 = x[L - 1]*x[L - 1];
- // Initialize the fields
- for (c = 0; c < nCoords; c++) {
- E[c] = C_ZERO;
- H[c] = C_ZERO;
- }
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // Firstly the easiest case, we want the field outside the particle
- if (Rho[c] >= x[L - 1]) {
- }
- // for (i = 1; i < (n_max - 1); i++) {
- // n = i - 1;
- /* // Equation (27)
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
- // Equation (28)
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
- // Equation (29)
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
- // Equation (33)
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
- */
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- /* for (t = 0; t < nTheta; t++) {
- S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- }*/
- // }
- // Free the memory used for the arrays
- for (n = 0; n < n_max; n++) {
- free(Pi[n]);
- free(Tau[n]);
- }
- free(Pi);
- free(Tau);
- free(an);
- free(bn);
- free(Rho);
- free(Phi);
- free(Theta);
- return n_max;
- }
|