test04.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of python-scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite the following reference:
  21. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. #
  25. # You should have received a copy of the GNU General Public License
  26. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. # This test case calculates the differential scattering
  28. # cross section from a Luneburg lens, as described in:
  29. # B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
  30. # The Luneburg lens is a sphere of radius a, with a
  31. # radially-varying index of refraction, given by:
  32. # m(r) = [2 - (r/a)**1]**(1/2)
  33. # For the calculations, the Luneburg lens was approximated
  34. # as a multilayered sphere with 500 equally spaced layers.
  35. # The refractive index of each layer is defined to be equal to
  36. # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2),
  37. # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
  38. # parameter in the lth layer is xl = l*xL/500. According to
  39. # geometrical optics theory, the differential cross section
  40. # can be expressed as:
  41. # d(Csca)/d(a**2*Omega) = cos(Theta)
  42. # The differential cross section from wave optics is:
  43. # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2
  44. from scattnlay import scattnlay
  45. import numpy as np
  46. nL = 500.0
  47. Xmax = 60.0
  48. x = np.array([np.arange(1.0, nL + 1.0)*Xmax/nL], dtype = np.float64)
  49. m = np.array([np.sqrt((2.0 - ((x[0] - 0.5*Xmax/nL)/60.0)**2.0)) + 0.0j], dtype = np.complex128)
  50. theta = np.arange(0.0, 180.25, 0.25, dtype = np.float64)*np.pi/180.0
  51. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m, theta)
  52. S11 = S1[0].real*S1[0].real + S1[0].imag*S1[0].imag + S2[0].real*S2[0].real + S2[0].imag*S2[0].imag
  53. result = np.vstack((theta*180.0/np.pi, S11/(2.0*Xmax*Xmax), np.cos(theta))).transpose()
  54. try:
  55. import matplotlib.pyplot as plt
  56. plt.plot(result[ : , 0], result[ : , 1], 'k', result[ : , 0], result[ : , 2], 'r')
  57. ax = plt.gca()
  58. ax.set_yscale('log')
  59. ax.set_ylim(1e-4, 1e3)
  60. plt.xlabel('Theta')
  61. plt.draw()
  62. plt.show()
  63. finally:
  64. np.savetxt("test04.txt", result, fmt = "%.5f")
  65. print result