1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the differential scattering
- # cross section for different x values of a PEC sphere
- # The differential cross section from wave optics is:
- # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2
- from scattnlay import scattnlay
- import numpy as np
- dX = 0.5
- Xmax = 5.0
- m = np.array([[1.0 - 1.0j]], dtype = np.complex128)
- theta = np.arange(0.0, 180.25, 0.25, dtype = np.float64)*np.pi/180.0
- result = theta*180.0/np.pi
- for xl in np.arange(dX, Xmax, dX, dtype = np.float64):
- x = np.array([[xl]], dtype = np.float64)
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m, theta)
- S11 = S1[0].real*S1[0].real + S1[0].imag*S1[0].imag + S2[0].real*S2[0].real + S2[0].imag*S2[0].imag
- result = np.vstack((result, S11/(2.0*xl*xl)))
- result = result.transpose()
- try:
- import matplotlib.pyplot as plt
- plt.plot(result[ : , 0], result[ : , 1:])
- ax = plt.gca()
- ax.set_yscale('log')
- # ax.set_ylim(1e-4, 1e3)
- plt.xlabel('Theta')
- plt.draw()
- plt.show()
- finally:
- np.savetxt("scattPEC.txt", result, fmt = "%.5f")
- print result
|