123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Ag nanoparticle.
- #import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- from fieldplot import fieldplot
- import numpy as np
- import cmath
- # # a)
- #WL=400 #nm
- #core_r = WL/20.0
- #epsilon_Ag = -2.0 + 10.0j
- # # b)
- #WL=400 #nm
- #core_r = WL/20.0
- #epsilon_Ag = -2.0 + 1.0j
- # # c)
- # WL=354 #nm
- # core_r = WL/20.0
- # epsilon_Ag = -2.0 + 0.28j
- # d)
- #WL=367 #nm
- #core_r = WL/20.0
- #epsilon_Ag = -2.71 + 0.25j
- WL=500 #nm
- core_r = 50.0
- epsilon_Ag = 4.0
- index_Ag = np.sqrt(epsilon_Ag)
- # n1 = 1.53413
- # n2 = 0.565838 + 7.23262j
- nm = 1.0
- x = np.ones((2), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL/4.0*3.0
- x[1] = 2.0*np.pi*core_r/WL
- m = np.ones((2), dtype = np.complex128)
- m[0] = index_Ag/nm
- m[1] = index_Ag/nm
- print( "x =", x)
- print( "m =", m)
- comment='bulk-Ag-flow'
- WL_units='nm'
- npts = 151
- factor=2.1
- flow_total = 9
- #flow_total = 21
- #flow_total = 0
- #crossplane='XZ'
- #crossplane='YZ'
- crossplane='XY'
- # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
- field_to_plot='Eabs'
- #field_to_plot='angleEx'
- import matplotlib.pyplot as plt
- fig, axs = plt.subplots(1,1)#, sharey=True, sharex=True)
- fig.tight_layout()
- fieldplot(fig, axs, x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total,
- subplot_label=' ',is_flow_extend=False)
- #fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total, is_flow_extend=False)
- # for ax in axs:
- # ax.locator_params(axis='x',nbins=5)
- # ax.locator_params(axis='y',nbins=5)
- fig.subplots_adjust(hspace=0.3, wspace=-0.1)
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
- +field_to_plot+".pdf",pad_inches=0.02, bbox_inches='tight')
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
|