| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 | 
							- #!/usr/bin/env python
 
- # -*- coding: UTF-8 -*-
 
- #
 
- #    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
 
- #
 
- #    This file is part of python-scattnlay
 
- #
 
- #    This program is free software: you can redistribute it and/or modify
 
- #    it under the terms of the GNU General Public License as published by
 
- #    the Free Software Foundation, either version 3 of the License, or
 
- #    (at your option) any later version.
 
- #
 
- #    This program is distributed in the hope that it will be useful,
 
- #    but WITHOUT ANY WARRANTY; without even the implied warranty of
 
- #    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
- #    GNU General Public License for more details.
 
- #
 
- #    The only additional remark is that we expect that all publications
 
- #    describing work using this software, or all commercial products
 
- #    using it, cite the following reference:
 
- #    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
 
- #        a multilayered sphere," Computer Physics Communications,
 
- #        vol. 180, Nov. 2009, pp. 2348-2354.
 
- #
 
- #    You should have received a copy of the GNU General Public License
 
- #    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
- # This test case calculates the electric field in the 
 
- # XY plane, for an spherical silver nanoparticle
 
- # embedded in glass.
 
- # Refractive index values correspond to a wavelength of
 
- # 400 nm. Maximum of the surface plasmon resonance (and,
 
- # hence, of electric field) is expected under those
 
- # conditions.
 
- import scattnlay
 
- import os
 
- path = os.path.dirname(scattnlay.__file__)
 
- print(scattnlay.__file__)
 
- from scattnlay import fieldnlay
 
- import numpy as np
 
- x = np.ones((1, 2), dtype = np.float64)
 
- x[0, 0] = 2.0*np.pi*0.05/1.064
 
- x[0, 1] = 2.0*np.pi*0.06/1.064
 
- m = np.ones((1, 2), dtype = np.complex128)
 
- m[0, 0] = 1.53413/1.3205
 
- m[0, 1] = (0.565838 + 7.23262j)/1.3205
 
- npts = 501
 
- scan = np.linspace(-2.0*x[0, 1], 2.0*x[0, 1], npts)
 
- coordX, coordY = np.meshgrid(scan, scan)
 
- coordX.resize(npts*npts)
 
- coordY.resize(npts*npts)
 
- coordZ = np.zeros(npts*npts, dtype = np.float64)
 
- coord = np.vstack((coordX, coordY, coordZ)).transpose()
 
- terms, E, H = fieldnlay(x, m, coord)
 
- Er = np.absolute(E)
 
- # |E|/|Eo|
 
- Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
 
- result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
 
- try:
 
-     import matplotlib.pyplot as plt
 
-     from matplotlib import cm
 
-     from matplotlib.colors import LogNorm
 
-     min_tick = 0.1
 
-     max_tick = 1.0
 
-     edata = np.resize(Eh, (npts, npts))
 
-     fig = plt.figure()
 
-     ax = fig.add_subplot(111)
 
-     # Rescale to better show the axes
 
-     scale_x = np.linspace(min(coordX), max(coordX), npts)
 
-     scale_y = np.linspace(min(coordY), max(coordY), npts)
 
-     # Define scale ticks
 
-     min_tick = max(0.1, min(min_tick, np.amin(edata)))
 
-     max_tick = max(max_tick, np.amax(edata))
 
-     scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
 
-     # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 
-     cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.afmhot,
 
-                     origin = 'lower', vmin = min_tick, vmax = max_tick,
 
-                     extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)),
 
-                     norm = LogNorm())
 
-     # Add colorbar
 
-     cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
 
-     cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
 
-     pos = list(cbar.ax.get_position().bounds)
 
-     fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 
-     plt.xlabel('X')
 
-     plt.ylabel('Y')
 
-     # This part draws the nanoshell
 
-     from matplotlib import patches
 
-     s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2,
 
-                       theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
 
-     ax.add_patch(s1)
 
-     s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2,
 
-                       theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
 
-     ax.add_patch(s2)
 
-     # End of drawing
 
-     plt.draw()
 
-     plt.show()
 
-     plt.clf()
 
-     plt.close()
 
- finally:
 
-     np.savetxt("field.txt", result, fmt = "%.5f")
 
-     print result
 
 
  |