123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Si-Ag-Si nanoparticle.
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- import cmath
- from fieldplot import GetFlow3D
- from fieldplot import GetField
- ###############################################################################
- def SetXM(design):
- """ design value:
- 1: AgSi - a1
- 2: SiAgSi - a1, b1
- 3: SiAgSi - a1, b2
- """
- epsilon_Si = 18.4631066585 + 0.6259727805j
- epsilon_Ag = -8.5014154589 + 0.7585845411j
- index_Si = np.sqrt(epsilon_Si)
- index_Ag = np.sqrt(epsilon_Ag)
- isSiAgSi=True
- isBulk = False
- if design==1:
- #36 5.62055 0 31.93 4.06 49 5.62055 500
- isSiAgSi=False
- WL=500 #nm
- core_width = 0.0 #nm Si
- inner_width = 31.93 #nm Ag
- outer_width = 4.06 #nm Si
- elif design==2:
- #62.5 4.48866 29.44 10.33 22.73 0 4.48866 500
- WL=500 #nm
- core_width = 29.44 #nm Si
- inner_width = 10.33 #nm Ag
- outer_width = 22.73 #nm Si
- elif design == 3:
- #81.4 3.14156 5.27 8.22 67.91 0 3.14156 500
- WL=500 #nm
- core_width = 5.27 #nm Si
- inner_width = 8.22 #nm Ag
- outer_width = 67.91 #nm Si
- elif design==4:
- WL=800 #nm
- epsilon_Si = 13.64 + 0.047j
- epsilon_Ag = -28.05 + 1.525j
- core_width = 17.74 #nm Si
- inner_width = 23.31 #nm Ag
- outer_width = 22.95 #nm Si
- elif design==5:
- WL=354 #nm
- core_r = WL/20.0
- epsilon_Ag = -2.0 + 0.28j #original
- index_Ag = np.sqrt(epsilon_Ag)
- x = np.ones((1), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL
- m = np.ones((1), dtype = np.complex128)
- m[0] = index_Ag
- # x = np.ones((2), dtype = np.float64)
- # x[0] = 2.0*np.pi*core_r/WL/4.0*3.0
- # x[1] = 2.0*np.pi*core_r/WL
- # m = np.ones((2), dtype = np.complex128)
- # m[0] = index_Ag
- # m[1] = index_Ag
- return x, m, WL
- core_r = core_width
- inner_r = core_r+inner_width
- outer_r = inner_r+outer_width
- nm = 1.0
- if isSiAgSi:
- x = np.ones((3), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL
- x[1] = 2.0*np.pi*inner_r/WL
- x[2] = 2.0*np.pi*outer_r/WL
- m = np.ones((3), dtype = np.complex128)
- m[0] = index_Si/nm
- m[1] = index_Ag/nm
- # m[0, 1] = index_Si/nm
- m[2] = index_Si/nm
- else:
- # bilayer
- x = np.ones((2), dtype = np.float64)
- x[0] = 2.0*np.pi*inner_r/WL
- x[1] = 2.0*np.pi*outer_r/WL
- m = np.ones((2), dtype = np.complex128)
- m[0] = index_Ag/nm
- m[1] = index_Si/nm
- return x, m, WL
- ###############################################################################
- #design = 1 #AgSi
- #design = 2
- #design = 3
- #design = 4 # WL=800
- design = 5 # Bulk Ag
- x, m, WL = SetXM(design)
- WL_units='nm'
- comment='P-SiAgSi-flow'
- comment='bulk-P-Ag-flow'
- print "x =", x
- print "m =", m
- npts = 101
- factor=2.2
- flow_total = 3
- #flow_total = 0
- crossplane='XZ'
- #crossplane='YZ'
- #crossplane='XY'
- Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m)
- Er = np.absolute(Ec)
- Hr = np.absolute(Hc)
- # |E|/|Eo|
- Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
- Eangle = np.angle(Ec[ :, 0])/np.pi*180
- Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
- Hangle = np.angle(Hc[ :, 1])/np.pi*180
- try:
- import matplotlib.pyplot as plt
- from matplotlib import cm
- from matplotlib.colors import LogNorm
- Eabs_data = np.resize(P, (npts, npts)).T
- #Eabs_data = np.resize(Pabs, (npts, npts)).T
- # Eangle_data = np.resize(Eangle, (npts, npts)).T
- # Habs_data = np.resize(Habs, (npts, npts)).T
- # Hangle_data = np.resize(Hangle, (npts, npts)).T
- fig, ax = plt.subplots(1,1)
- # Rescale to better show the axes
- scale_x = np.linspace(min(coordX)*WL/2.0/np.pi, max(coordX)*WL/2.0/np.pi, npts)
- scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi, max(coordZ)*WL/2.0/np.pi, npts)
- # Define scale ticks
- min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
- max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
- scale_ticks = np.linspace(min_tick, max_tick, 6)
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
- ax.set_title('Pabs')
- cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
- origin = 'lower'
- , vmin = min_tick, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- ax.axis("image")
- # Add colorbar
- cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
- cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
- pos = list(cbar.ax.get_position().bounds)
- #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
- if crossplane=='XZ':
- plt.xlabel('Z, '+WL_units)
- plt.ylabel('X, '+WL_units)
- elif crossplane=='YZ':
- plt.xlabel('Z, '+WL_units)
- plt.ylabel('Y, '+WL_units)
- elif crossplane=='XY':
- plt.xlabel('Y, '+WL_units)
- plt.ylabel('X, '+WL_units)
-
- # # This part draws the nanoshell
- from matplotlib import patches
- from matplotlib.path import Path
- for xx in x:
- r= xx*WL/2.0/np.pi
- s1 = patches.Arc((0, 0), 2.0*r, 2.0*r, angle=0.0, zorder=1.8,
- theta1=0.0, theta2=360.0, linewidth=1, color='black')
- ax.add_patch(s1)
- #
- # for flow in range(0,flow_total):
- # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
- # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
- # min(scale_z),
- # #0.0,
- # npts*16)
- # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
- # #codes = [Path.CURVE4]*len(verts)
- # codes = [Path.LINETO]*len(verts)
- # codes[0] = Path.MOVETO
- # path = Path(verts, codes)
- # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
- # ax.add_patch(patch)
- if (crossplane=='XZ' or crossplane=='YZ') and flow_total>0:
- from matplotlib.path import Path
- scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
- min_SP = -factor*x[-1]
- step_SP = 2.0*factor*x[-1]/(flow_total-1)
- x0, y0, z0 = 0, 0, 0
- max_length=factor*x[-1]*15
- #max_length=factor*x[-1]*5
- max_angle = np.pi/200
- #for flow in range(0,flow_total*2+1):
- for flow in range(0,flow_total):
- if crossplane=='XZ':
- #x0 = min_SP*2 + flow*step_SP
- x0 = min_SP + flow*step_SP
- z0 = min_SP
- #y0 = x[-1]/20
- elif crossplane=='YZ':
- #y0 = min_SP*2 + flow*step_SP
- y0 = min_SP + flow*step_SP
- z0 = min_SP
- #x0 = x[-1]/20
- flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m)
- if crossplane=='XZ':
- flow_z_plot = flow_zSP*WL/2.0/np.pi
- flow_f_plot = flow_xSP*WL/2.0/np.pi
- elif crossplane=='YZ':
- flow_z_plot = flow_zSP*WL/2.0/np.pi
- flow_f_plot = flow_ySP*WL/2.0/np.pi
- verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
- codes = [Path.LINETO]*len(verts)
- codes[0] = Path.MOVETO
- path = Path(verts, codes)
- #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
- patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white',zorder = 1.9)
- ax.add_patch(patch)
- ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+".svg")
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
- finally:
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
- np.array([m]))
- print("Qabs = "+str(Qabs));
- #
|