1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- from scattnlay import scattnlay
- import numpy as np
- dX = 0.5
- Xmax = 5.0
- m = np.array([[1.0 - 1.0j]], dtype = np.complex128)
- theta = np.arange(0.0, 180.25, 0.25, dtype = np.float64)*np.pi/180.0
- result = theta*180.0/np.pi
- for xl in np.arange(dX, Xmax, dX, dtype = np.float64):
- x = np.array([[xl]], dtype = np.float64)
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m, theta)
- S11 = S1[0].real*S1[0].real + S1[0].imag*S1[0].imag + S2[0].real*S2[0].real + S2[0].imag*S2[0].imag
- result = np.vstack((result, S11/(2.0*xl*xl)))
- result = result.transpose()
- try:
- import matplotlib.pyplot as plt
- plt.plot(result[ : , 0], result[ : , 1:])
- ax = plt.gca()
- ax.set_yscale('log')
- plt.xlabel('Theta')
- plt.draw()
- plt.show()
- finally:
- np.savetxt("scattPEC.txt", result, fmt = "%.5f")
- print result
|