| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 | #!/usr/bin/env python3# -*- coding: UTF-8 -*-##    Copyright (C) 2019  Konstantin Ladutenko <kostyfisik@gmail.com>##    This file is part of python-scattnlay##    This program is free software: you can redistribute it and/or modify#    it under the terms of the GNU General Public License as published by#    the Free Software Foundation, either version 3 of the License, or#    (at your option) any later version.##    This program is distributed in the hope that it will be useful,#    but WITHOUT ANY WARRANTY; without even the implied warranty of#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the#    GNU General Public License for more details.##    The only additional remark is that we expect that all publications#    describing work using this software, or all commercial products#    using it, cite the following reference:#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by#        a multilayered sphere," Computer Physics Communications,#        vol. 180, Nov. 2009, pp. 2348-2354.##    You should have received a copy of the GNU General Public License#    along with this program.  If not, see <http://www.gnu.org/licenses/>.import syssys.path.insert(0,'..')  # to be able to import scattnlay from the upper dirfrom scattnlay import scattnlay,scattcoeffs,fieldnlayimport matplotlib.pyplot as pltimport numpy as npimport cmathfrom_WL = 400to_WL = 800WL_points= 100WLs = np.linspace(from_WL, to_WL, WL_points)index_NP = 1.5+0.3jx = np.ones((1), dtype = np.float64)m = np.ones((1), dtype = np.complex128)core_r = 100Qsca_vec = []core_r_vec = []an_vec = []bn_vec = []for WL in WLs:    x[0] = 2.0*np.pi*core_r/WL#/4.0*3.0    m[0] = index_NP    terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(        np.array(x), np.array(m),        mp=True    )    print(np.array([Qsca]))    terms, an, bn = scattcoeffs(x, m,24)    # Qsca_vec.append(Qsca*np.pi*core_r**2*1e-5)    Qsca_vec.append(Qsca)#*np.pi*core_r**2*1e-5)    core_r_vec.append(core_r)    an_vec.append(np.abs(an)[0])    bn_vec.append(np.abs(bn)[0])an_vec = np.array(an_vec)bn_vec = np.array(bn_vec)# print(an_vec)fig, axs2 = plt.subplots(1,1)#, sharey=True, sharex=True)axs2.plot(WLs, Qsca_vec, color="black")# axs.set_xlabel("D, nm")# axs.set_ylabel("$Q_{sca}$")# axs2 = axs.twinx()# axs2.plot(np.array(core_r_vec)*2,an_vec[:,0],"b.",lw=0.8, markersize=1.9,label="$a_0$")# axs2.plot(np.array(core_r_vec)*2,bn_vec[:,0],"b-", markersize=1.9,label="$b_0$")# axs2.plot(np.array(core_r_vec)*2,an_vec[:,1],"g.",lw=0.8, markersize=1.9,label="$a_1$")# axs2.plot(np.array(core_r_vec)*2,bn_vec[:,1],"g-", markersize=1.9,label="$b_1$")# axs2.legend(loc="upper right")# axs2.tick_params('y', colors='black')# axs2.set_ylim(0,1)# axs2.set_ylabel("Mie",color="black")plt.savefig("spectra.pdf",pad_inches=0.02, bbox_inches='tight')plt.show()plt.clf()plt.close()
 |