123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # Several functions to plot field and streamlines (power flow lines).
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- import cmath
- def unit_vector(vector):
- """ Returns the unit vector of the vector. """
- return vector / np.linalg.norm(vector)
- def angle_between(v1, v2):
- """ Returns the angle in radians between vectors 'v1' and 'v2'::
- >>> angle_between((1, 0, 0), (0, 1, 0))
- 1.5707963267948966
- >>> angle_between((1, 0, 0), (1, 0, 0))
- 0.0
- >>> angle_between((1, 0, 0), (-1, 0, 0))
- 3.141592653589793
- """
- v1_u = unit_vector(v1)
- v2_u = unit_vector(v2)
- angle = np.arccos(np.dot(v1_u, v2_u))
- if np.isnan(angle):
- if (v1_u == v2_u).all():
- return 0.0
- else:
- return np.pi
- return angle
- ###############################################################################
- def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
- # Initial position
- flow_x = [x0]
- flow_y = [y0]
- flow_z = [z0]
- max_step = x[-1]/3
- min_step = x[0]/2000
- # max_step = min_step
- step = min_step*2.0
- if max_step < min_step:
- max_step = min_step
- coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
- Ec, Hc = E[0, 0, :], H[0, 0, :]
- S = np.cross(Ec, Hc.conjugate()).real
- Snorm_prev = S/np.linalg.norm(S)
- Sprev = S
- length = 0
- dpos = step
- count = 0
- while length < max_length:
- count = count + 1
- if (count>3000): # Limit length of the absorbed power streamlines
- break
- if step<max_step:
- step = step*2.0
- r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
- while step > min_step:
- #Evaluate displacement from previous poynting vector
- dpos = step
- dx = dpos*Snorm_prev[0];
- dy = dpos*Snorm_prev[1];
- dz = dpos*Snorm_prev[2];
- #Test the next position not to turn\chang size for more than max_angle
- coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
- Ec, Hc = E[0, 0, :], H[0, 0, :]
- Eth = max(np.absolute(Ec))/1e10
- Hth = max(np.absolute(Hc))/1e10
- for i in xrange(0,len(Ec)):
- if abs(Ec[i]) < Eth:
- Ec[i] = 0+0j
- if abs(Hc[i]) < Hth:
- Hc[i] = 0+0j
- S = np.cross(Ec, Hc.conjugate()).real
- if not np.isfinite(S).all():
- break
- Snorm = S/np.linalg.norm(S)
- diff = (S-Sprev)/max(np.linalg.norm(S), np.linalg.norm(Sprev))
- if np.linalg.norm(diff)<max_angle:
- # angle = angle_between(Snorm, Snorm_prev)
- # if abs(angle) < max_angle:
- break
- step = step/2.0
- #3. Save result
- Sprev = S
- Snorm_prev = Snorm
- dx = dpos*Snorm_prev[0];
- dy = dpos*Snorm_prev[1];
- dz = dpos*Snorm_prev[2];
- length = length + step
- flow_x.append(flow_x[-1] + dx)
- flow_y.append(flow_y[-1] + dy)
- flow_z.append(flow_z[-1] + dz)
- return np.array(flow_x), np.array(flow_y), np.array(flow_z)
- ###############################################################################
- def GetField(crossplane, npts, factor, x, m, pl):
- """
- crossplane: XZ, YZ, XY
- npts: number of point in each direction
- factor: ratio of plotting size to outer size of the particle
- x: size parameters for particle layers
- m: relative index values for particle layers
- """
- scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
- zero = np.zeros(npts*npts, dtype = np.float64)
- if crossplane=='XZ':
- coordX, coordZ = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordZ.resize(npts*npts)
- coordY = zero
- coordPlot1 = coordX
- coordPlot2 = coordZ
- elif crossplane=='YZ':
- coordY, coordZ = np.meshgrid(scan, scan)
- coordY.resize(npts*npts)
- coordZ.resize(npts*npts)
- coordX = zero
- coordPlot1 = coordY
- coordPlot2 = coordZ
- elif crossplane=='XY':
- coordX, coordY = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordY.resize(npts*npts)
- coordZ = zero
- coordPlot1 = coordY
- coordPlot2 = coordX
-
- coord = np.vstack((coordX, coordY, coordZ)).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
- Ec = E[0, :, :]
- Hc = H[0, :, :]
- P=[]
- P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], np.conjugate(Hc[n]))).real, range(0, len(E[0]))))
- # for n in range(0, len(E[0])):
- # P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
- return Ec, Hc, P, coordPlot1, coordPlot2
- ###############################################################################
- def fieldplot(x,m, WL, comment='', WL_units=' ', crossplane='XZ', field_to_plot='Pabs',npts=101, factor=2.1, flow_total=11, is_flow_extend=True, pl=-1, outline_width=1):
- Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m, pl)
- Er = np.absolute(Ec)
- Hr = np.absolute(Hc)
- try:
- import matplotlib.pyplot as plt
- from matplotlib import cm
- from matplotlib.colors import LogNorm
- if field_to_plot == 'Pabs':
- Eabs_data = np.resize(P, (npts, npts)).T
- label = r'$\operatorname{Re}(E \times H^*)$'
- elif field_to_plot == 'Eabs':
- Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
- Eabs_data = np.resize(Eabs, (npts, npts)).T
- label = r'$|E|$'
- elif field_to_plot == 'Habs':
- Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
- Eabs_data = np.resize(Habs, (npts, npts)).T
- label = r'$|H|$'
- elif field_to_plot == 'angleEx':
- Eangle = np.angle(Ec[ :, 0])/np.pi*180
- Eabs_data = np.resize(Eangle, (npts, npts)).T
- label = r'$arg(E_x)$'
- elif field_to_plot == 'angleHy':
- Hangle = np.angle(Hc[ :, 1])/np.pi*180
- Eabs_data = np.resize(Hangle, (npts, npts)).T
- label = r'$arg(H_y)$'
- fig, ax = plt.subplots(1,1)
- # Rescale to better show the axes
- scale_x = np.linspace(min(coordX)*WL/2.0/np.pi, max(coordX)*WL/2.0/np.pi, npts)
- scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi, max(coordZ)*WL/2.0/np.pi, npts)
- # Define scale ticks
- min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
- max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
- scale_ticks = np.linspace(min_tick, max_tick, 6)
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
- ax.set_title(label)
- my_cmap = cm.jet
- if not (field_to_plot == 'angleEx' or field_to_plot == 'angleHy'):
- my_cmap.set_under('w')
- cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = my_cmap,
- origin = 'lower'
- , vmin = min_tick+max_tick*1e-15, vmax = max_tick
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
- #,norm = LogNorm()
- )
- ax.axis("image")
- # Add colorbar
- cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
- cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
- pos = list(cbar.ax.get_position().bounds)
- #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
- if crossplane=='XZ':
- plt.xlabel('Z, '+WL_units)
- plt.ylabel('X, '+WL_units)
- elif crossplane=='YZ':
- plt.xlabel('Z, '+WL_units)
- plt.ylabel('Y, '+WL_units)
- elif crossplane=='XY':
- plt.xlabel('Y, '+WL_units)
- plt.ylabel('X, '+WL_units)
- # # This part draws the nanoshell
- from matplotlib import patches
- from matplotlib.path import Path
- x_edge = (x[-1], x[0])
- for xx in x_edge:
- r= xx*WL/2.0/np.pi
- s1 = patches.Arc((0, 0), 2.0*r, 2.0*r, angle=0.0, zorder=1.8,
- theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
- ax.add_patch(s1)
- if (crossplane=='XZ' or crossplane=='YZ') and flow_total>0:
- from matplotlib.path import Path
- scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
- min_SP = -factor*x[-1]
- step_SP = 2.0*factor*x[-1]/(flow_total-1)
- x0, y0, z0 = 0, 0, 0
- max_length=factor*x[-1]*8
- #max_length=factor*x[-1]*4
- max_angle = np.pi/160
- if is_flow_extend:
- rg = range(0,flow_total*2+1)
- else:
- rg = range(0,flow_total)
- for flow in rg:
- if crossplane=='XZ':
- if is_flow_extend:
- x0 = min_SP*2 + flow*step_SP
- else:
- x0 = min_SP + flow*step_SP
- z0 = min_SP
- #y0 = x[-1]/20
- elif crossplane=='YZ':
- if is_flow_extend:
- y0 = min_SP*2 + flow*step_SP
- else:
- y0 = min_SP + flow*step_SP
- z0 = min_SP
- #x0 = x[-1]/20
- flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m,pl)
- if crossplane=='XZ':
- flow_z_plot = flow_zSP*WL/2.0/np.pi
- flow_f_plot = flow_xSP*WL/2.0/np.pi
- elif crossplane=='YZ':
- flow_z_plot = flow_zSP*WL/2.0/np.pi
- flow_f_plot = flow_ySP*WL/2.0/np.pi
- verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
- codes = [Path.LINETO]*len(verts)
- codes[0] = Path.MOVETO
- path = Path(verts, codes)
- #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
- patch = patches.PathPatch(path, facecolor='none', lw=1.5, edgecolor='white',zorder = 1.9)
- ax.add_patch(patch)
- #ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
- # +field_to_plot+".png")
- +field_to_plot+".pdf")
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
- finally:
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
- np.array([m]))
- print("Qabs = "+str(Qabs));
- #
|