| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 | #ifndef SRC_NMIE_HPP_#define SRC_NMIE_HPP_//**********************************************************************************////    Copyright (C) 2009-2018  Ovidio Pena <ovidio@bytesfall.com>                   ////    Copyright (C) 2013-2018  Konstantin Ladutenko <kostyfisik@gmail.com>          ////                                                                                  ////    This file is part of scattnlay                                                ////                                                                                  ////    This program is free software: you can redistribute it and/or modify          ////    it under the terms of the GNU General Public License as published by          ////    the Free Software Foundation, either version 3 of the License, or             ////    (at your option) any later version.                                           ////                                                                                  ////    This program is distributed in the hope that it will be useful,               ////    but WITHOUT ANY WARRANTY; without even the implied warranty of                ////    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 ////    GNU General Public License for more details.                                  ////                                                                                  ////    The only additional remark is that we expect that all publications            ////    describing work using this software, or all commercial products               ////    using it, cite at least one of the following references:                      ////    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           ////        a multilayered sphere," Computer Physics Communications,                  ////        vol. 180, Nov. 2009, pp. 2348-2354.                                       ////    [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie              ////        calculation of electromagnetic near-field for a multilayered              ////        sphere," Computer Physics Communications, vol. 214, May 2017,             ////        pp. 225-230.                                                              ////                                                                                  ////    You should have received a copy of the GNU General Public License             ////    along with this program.  If not, see <http://www.gnu.org/licenses/>.         ////**********************************************************************************//#define VERSION "2.2"#include <array>#include <complex>#include <cstdlib>#include <iostream>#include <vector>#include <boost/math/constants/constants.hpp>namespace nmie {  int ScattCoeffs(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nmax, std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn);  int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);  int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);  int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);  int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);  int nField(const unsigned int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const unsigned int ncoord, const std::vector<double>& Xp, const std::vector<double>& Yp, const std::vector<double>& Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H);  template <typename FloatType = double>  class MultiLayerMie {       public:    //Used constants TODO! Change to boost PI    const double PI_=3.14159265358979323846;    // light speed [m s-1]    const double cc_ = 2.99792458e8;    // assume non-magnetic (MU=MU0=const) [N A-2]    const double mu_ = 4.0*PI_*1.0e-7;    // Run calculation    void RunMieCalculation();    void RunFieldCalculation();    void calcScattCoeffs();    // Return calculation results    FloatType GetQext();    FloatType GetQsca();    FloatType GetQabs();    FloatType GetQbk();    FloatType GetQpr();    FloatType GetAsymmetryFactor();    FloatType GetAlbedo();    std::vector<std::complex<FloatType> > GetS1();    std::vector<std::complex<FloatType> > GetS2();    std::vector<std::complex<FloatType> > GetAn(){return an_;};    std::vector<std::complex<FloatType> > GetBn(){return bn_;};    // Problem definition    // Modify size of all layers    void SetLayersSize(const std::vector<FloatType>& layer_size);    // Modify refractive index of all layers    void SetLayersIndex(const std::vector< std::complex<FloatType> >& index);    // Modify scattering (theta) angles    void SetAngles(const std::vector<FloatType>& angles);    // Modify coordinates for field calculation    void SetFieldCoords(const std::vector< std::vector<FloatType> >& coords);    // Modify index of PEC layer    void SetPECLayer(int layer_position = 0);    // Set a fixed value for the maximun number of terms    void SetMaxTerms(int nmax);    // Get maximun number of terms    int GetMaxTerms() {return nmax_;};    bool isMieCalculated(){return isMieCalculated_;};    // Clear layer information    void ClearLayers();    void MarkUncalculated();    // Read parameters    // Get total size parameter of particle    FloatType GetSizeParameter();    // Returns size of all layers    std::vector<FloatType> GetLayersSize(){return size_param_;};    // Returns refractive index of all layers    std::vector<std::complex<FloatType> > GetLayersIndex(){return refractive_index_;};    // Returns scattering (theta) angles    std::vector<FloatType> GetAngles(){return theta_;};    // Returns coordinates used for field calculation    std::vector<std::vector<FloatType> > GetFieldCoords(){return coords_;};    // Returns index of PEC layer    int GetPECLayer(){return PEC_layer_position_;};    std::vector<std::vector< std::complex<FloatType> > > GetFieldE(){return E_;};   // {X[], Y[], Z[]}    std::vector<std::vector< std::complex<FloatType> > > GetFieldH(){return H_;};    // Get fields in spherical coordinates.    std::vector<std::vector< std::complex<FloatType> > > GetFieldEs(){return E_;};   // {rho[], teha[], phi[]}    std::vector<std::vector< std::complex<FloatType> > > GetFieldHs(){return H_;};  protected:    // Size parameter for all layers    std::vector<FloatType> size_param_;    // Refractive index for all layers    std::vector< std::complex<FloatType> > refractive_index_;    // Scattering coefficients    std::vector<std::complex<FloatType> > an_, bn_;    std::vector< std::vector<std::complex<FloatType> > > aln_, bln_, cln_, dln_;    void calcExpanCoeffs();    // Points for field evaluation    std::vector< std::vector<FloatType> > coords_;  private:    void calcNstop();    void calcNmax(unsigned int first_layer);    std::complex<FloatType> calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,                                 std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,                                 std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);    std::complex<FloatType> calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,                                 std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,                                 std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);    std::complex<FloatType> calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,                                 FloatType Pi, FloatType Tau);    std::complex<FloatType> calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,                                 FloatType Pi, FloatType Tau);    void calcD1D3(std::complex<FloatType> z,                  std::vector<std::complex<FloatType> >& D1,                  std::vector<std::complex<FloatType> >& D3);    void calcPsiZeta(std::complex<FloatType> x,                     std::vector<std::complex<FloatType> >& Psi,                     std::vector<std::complex<FloatType> >& Zeta);    void calcPiTau(const FloatType& costheta,                   std::vector<FloatType>& Pi, std::vector<FloatType>& Tau);    void calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,                       const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,                       const FloatType& Pi, const FloatType& Tau, const FloatType& n,                       std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n,                        std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n);    void calcField(const FloatType Rho, const FloatType Theta, const FloatType Phi,                   std::vector<std::complex<FloatType> >& E, std::vector<std::complex<FloatType> >& H);    bool isExpCoeffsCalc_ = false;    bool isScaCoeffsCalc_ = false;    bool isMieCalculated_ = false;    // Scattering angles for scattering pattern in radians    std::vector<FloatType> theta_;    // Should be -1 if there is no PEC.    int PEC_layer_position_ = -1;    // with calcNmax(int first_layer);    int nmax_ = -1;    int nmax_preset_ = -1;    /// Store result    FloatType Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;    std::vector<std::vector< std::complex<FloatType> > > E_, H_;  // {X[], Y[], Z[]}    std::vector<std::vector< std::complex<FloatType> > > Es_, Hs_;  // {X[], Y[], Z[]}    std::vector<std::complex<FloatType> > S1_, S2_;    //Temporary variables    std::vector<std::complex<FloatType> > PsiZeta_;  };  // end of class MultiLayerMie}  // end of namespace nmie#endif  // SRC_NMIE_HPP_
 |