123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- /**
- * @file test-negative-epsilon.cc
- * @author Konstantin Ladutenko <kostyfisik at gmail (.) com>
- * @date Mon Mar 9 13:21:37 2015
- *
- * @brief test negative epsilon case
- *
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- *
- */
- #include "nmie.h"
- #include <stdio.h>
- template<class T> inline T pow2(const T value) {return value*value;};
- const double PI=3.14159265358979323846;
- nmie::MultiLayerMie multi_layer_mie_;
- double lambda_work_ = 3.75; // cm
- double a_ = 0.75*lambda_work_; // 2.8125 cm - size of PEC core
- double min_index_ = 1e-11;
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- double EvaluateScatterOnlyIndex(std::vector<double> input) {
- double Qsca;
- std::vector<std::complex<double>> cindex;
- cindex.clear();
- double k = min_index_, n=min_index_;
- for (double epsilon : input) {
- // sqrt(epsilon) = n + i*k
- k = min_index_;
- n=min_index_;
- if (epsilon > 0.0) n=std::sqrt(epsilon);
- else k = std::sqrt(-epsilon);
- if (n < min_index_) n = min_index_;
- if (k < min_index_) k = min_index_;
- //printf("eps= %g, n=%g, k=%g\n", epsilon, n, k);
- cindex.push_back(std::complex<double>(n, k));
- }
- multi_layer_mie_.SetCoatingIndex(cindex);
- try {
- multi_layer_mie_.RunMieCalculations();
- Qsca = multi_layer_mie_.GetQsca();
- } catch( const std::invalid_argument& ia ) {
- Qsca = 0;
- printf("#");
- // Will catch if multi_layer_mie_ fails or other errors.
- //std::cerr << "Invalid argument: " << ia.what() << std::endl;
- }
- double total_r = multi_layer_mie_.GetTotalRadius();
- return Qsca*PI*pow2(total_r);
- }
- int main(int argc, char *argv[]) {
- try {
- // Only PEC target
- multi_layer_mie_.SetTargetPEC(a_);
- multi_layer_mie_.SetWavelength(lambda_work_);
- multi_layer_mie_.RunMieCalculations();
- double PEC_Qsca = multi_layer_mie_.GetQsca();
- double PEC_r = multi_layer_mie_.GetTotalRadius();
- double PEC_RCS = PEC_Qsca*PI*pow2(PEC_r);
-
- // PEC target covered with with air layer
- multi_layer_mie_.SetCoatingWidth({0.1});
- multi_layer_mie_.SetCoatingIndex({{1.0,0.0}});
- multi_layer_mie_.RunMieCalculations();
- double Qsca1 = multi_layer_mie_.GetQsca();
- double total_r1 = multi_layer_mie_.GetTotalRadius();
- double initial_RCS1 = Qsca1*PI*pow2(total_r1);
- printf("RCS = %g cm^2 with (r=%g) and RCS=%g cm^2 without (r=%g)air coating.\n",
- initial_RCS1, total_r1,
- PEC_RCS, PEC_r);
- //multi_layer_mie.SetMaxTermsNumber(150);
- // Bi-layer, inner layer = lossless metall.
- std::vector<std::complex<double>> cindex;
- cindex.clear();
- double n=min_index_;
- double k=std::sqrt(0.29);
- cindex.push_back(std::complex<double>(n, k));
- n=std::sqrt(24.6);
- k=min_index_;
- cindex.push_back(std::complex<double>(n, k));
- multi_layer_mie_.SetCoatingWidth({0.1,0.1});
- multi_layer_mie_.SetCoatingIndex(cindex);
- multi_layer_mie_.RunMieCalculations();
- double Qsca = multi_layer_mie_.GetQsca();
- double total_r = multi_layer_mie_.GetTotalRadius();
- double initial_RCS = Qsca*PI*pow2(total_r);
- printf("RCS=%g for bi-layer coating (total R=%g).\n", initial_RCS,total_r);
- n=1.0;
- k=min_index_;
- cindex.push_back(std::complex<double>(n, k));
- multi_layer_mie_.SetCoatingWidth({0.1,0.1,0.1});
- multi_layer_mie_.SetCoatingIndex(cindex);
- multi_layer_mie_.RunMieCalculations();
- Qsca = multi_layer_mie_.GetQsca();
- total_r = multi_layer_mie_.GetTotalRadius();
- initial_RCS = Qsca*PI*pow2(total_r);
- printf("RCS=%g for bi-layer+air coating (total R=%g).\n", initial_RCS,total_r);
- //multi_layer_mie_.SetMaxTermsNumber(15);
- multi_layer_mie_.SetCoatingWidth({0.1,0.1});
- printf("With %g coating= (26.24).\n",
- EvaluateScatterOnlyIndex({-0.29, 24.6}));
- multi_layer_mie_.SetCoatingWidth({0.1,0.1,0.1});
- printf("With %g coating> (26.24).\n",
- EvaluateScatterOnlyIndex({-0.29, 24.6, 1.0}));
- //multi_layer_mie_.SetMaxTermsNumber(-1);
- // 26.24: 25|| -0.29 +24.60
- // 28.48: 38|| -0.29 +24.60 +1.00
-
- } catch( const std::invalid_argument& ia ) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- return -1;
- }
- return 0;
- }
|