123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- # Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This test case calculates the electric field in the
- # E-k plane, for an spherical Si-Ag-Si nanoparticle.
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- import cmath
- # from fieldplot import GetFlow3D
- # from fieldplot import GetField
- from fieldplot import fieldplot
- ###############################################################################
- def SetXM(design):
- """ design value:
- 1: AgSi - a1
- 2: SiAgSi - a1, b1
- 3: SiAgSi - a1, b2
- """
- epsilon_Si = 18.4631066585 + 0.6259727805j
- epsilon_Ag = -8.5014154589 + 0.7585845411j
- index_Si = np.sqrt(epsilon_Si)
- index_Ag = np.sqrt(epsilon_Ag)
- isSiAgSi=True
- isBulk = False
- if design==1:
- #36 5.62055 0 31.93 4.06 49 5.62055 500
- isSiAgSi=False
- WL=500 #nm
- core_width = 0.0 #nm Si
- inner_width = 31.93 #nm Ag
- outer_width = 4.06 #nm Si
- elif design==2:
- #62.5 4.48866 29.44 10.33 22.73 0 4.48866 500
- WL=500 #nm
- core_width = 29.44 #nm Si
- inner_width = 10.33 #nm Ag
- outer_width = 22.73 #nm Si
- elif design == 3:
- #81.4 3.14156 5.27 8.22 67.91 0 3.14156 500
- WL=500 #nm
- core_width = 5.27 #nm Si
- inner_width = 8.22 #nm Ag
- outer_width = 67.91 #nm Si
- elif design==4:
- WL=800 #nm
- epsilon_Si = 13.64 + 0.047j
- epsilon_Ag = -28.05 + 1.525j
- core_width = 17.74 #nm Si
- inner_width = 23.31 #nm Ag
- outer_width = 22.95 #nm Si
- elif design==5:
- WL=354 #nm
- core_r = WL/20.0
- epsilon_Ag = -2.0 + 0.28j #original
- index_Ag = np.sqrt(epsilon_Ag)
- x = np.ones((1), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL
- m = np.ones((1), dtype = np.complex128)
- m[0] = index_Ag
- # x = np.ones((2), dtype = np.float64)
- # x[0] = 2.0*np.pi*core_r/WL/4.0*3.0
- # x[1] = 2.0*np.pi*core_r/WL
- # m = np.ones((2), dtype = np.complex128)
- # m[0] = index_Ag
- # m[1] = index_Ag
- return x, m, WL
- elif design==6:
- WL=1052 #nm
- core_r = 140.0
- #core_r = 190.0
- core_r = 204.2
- epsilon_Si = 12.7294053067+0.000835315166667j
- index_Si = np.sqrt(epsilon_Si)
- x = np.ones((1), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL
- m = np.ones((1), dtype = np.complex128)
- m[0] = index_Si
- # x = np.ones((2), dtype = np.float64)
- # x[0] = 2.0*np.pi*core_r/WL/4.0*3.0
- # x[1] = 2.0*np.pi*core_r/WL
- # m = np.ones((2), dtype = np.complex128)
- # m[0] = index_Ag
- # m[1] = index_Ag
- return x, m, WL
- core_r = core_width
- inner_r = core_r+inner_width
- outer_r = inner_r+outer_width
- nm = 1.0
- if isSiAgSi:
- x = np.ones((3), dtype = np.float64)
- x[0] = 2.0*np.pi*core_r/WL
- x[1] = 2.0*np.pi*inner_r/WL
- x[2] = 2.0*np.pi*outer_r/WL
- m = np.ones((3), dtype = np.complex128)
- m[0] = index_Si/nm
- m[1] = index_Ag/nm
- # m[0, 1] = index_Si/nm
- m[2] = index_Si/nm
- else:
- # bilayer
- x = np.ones((2), dtype = np.float64)
- x[0] = 2.0*np.pi*inner_r/WL
- x[1] = 2.0*np.pi*outer_r/WL
- m = np.ones((2), dtype = np.complex128)
- m[0] = index_Ag/nm
- m[1] = index_Si/nm
- return x, m, WL
- ###############################################################################
- #design = 1 #AgSi
- #design = 2
- #design = 3
- # design = 4 # WL=800
- # comment='SiAgSi-flow'
- #design = 5 # Bulk Ag
- # comment='bulk-Ag-flow'
- design = 6 # WL=800
- comment='Si-flow'
- x, m, WL = SetXM(design)
- WL_units='nm'
- print "x =", x[-1]
- print "m =", m
- npts = 501
- factor=2.1
- flow_total = 39
- #flow_total = 21
- #flow_total = 0
- #crossplane='XZ'
- crossplane='XYZ'
- #crossplane='YZ'
- #crossplane='XY'
- # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
- field_to_plot='Eabs'
- #field_to_plot='angleEx'
- #field_to_plot='Pabs'
- import matplotlib.pyplot as plt
- fig, axs = plt.subplots(1,1)#, sharey=True, sharex=True)
- fig.tight_layout()
- fieldplot(fig, axs, x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total,
- subplot_label=' ',is_flow_extend=False)
- fig.subplots_adjust(hspace=0.3, wspace=-0.1)
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
- +field_to_plot+".pdf",pad_inches=0.02, bbox_inches='tight')
- plt.draw()
- # plt.show()
- plt.clf()
- plt.close()
|