| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | 
							- #!/usr/bin/env python
 
- # -*- coding: UTF-8 -*-
 
- #
 
- #    Copyright (C) 2009-2017 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
 
- #
 
- #    This file is part of python-scattnlay
 
- #
 
- #    This program is free software: you can redistribute it and/or modify
 
- #    it under the terms of the GNU General Public License as published by
 
- #    the Free Software Foundation, either version 3 of the License, or
 
- #    (at your option) any later version.
 
- #
 
- #    This program is distributed in the hope that it will be useful,
 
- #    but WITHOUT ANY WARRANTY; without even the implied warranty of
 
- #    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
- #    GNU General Public License for more details.
 
- #
 
- #    The only additional remark is that we expect that all publications
 
- #    describing work using this software, or all commercial products
 
- #    using it, cite at least one of the following references:
 
- #    [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
 
- #        a multilayered sphere," Computer Physics Communications,
 
- #        vol. 180, Nov. 2009, pp. 2348-2354.
 
- #    [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
 
- #        calculation of electromagnetic near-field for a multilayered
 
- #        sphere," Computer Physics Communications, vol. 214, May 2017,
 
- #        pp. 225-230.
 
- #
 
- #    You should have received a copy of the GNU General Public License
 
- #    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
- # This is a test against the program n-mie (version 3a) for the test case
 
- # distributed by them (extended for x up to 100)
 
- # n-mie is based in the algorithm described in:
 
- # Wu Z.P., Wang Y.P.
 
- # Electromagnetic scattering for multilayered spheres:
 
- # recursive algorithms
 
- # Radio Science 1991. V. 26. P. 1393-1401.
 
- # Voshchinnikov N.V., Mathis J.S.
 
- # Calculating Cross Sections of Composite Interstellar Grains
 
- # Astrophys. J. 1999. V. 526. #1. 
 
- # The test consist in 5 layers with the following parameters
 
- # m1=1.8 i1.7
 
- # m2=0.8 i0.7
 
- # m3=1.2 i0.09
 
- # m4=2.8 i0.2
 
- # m5=1.5 i0.4
 
- # v1/Vt=0.1
 
- # v2/Vt=0.26
 
- # v3/Vt=0.044
 
- # v4/Vt=0.3666
 
- import scattnlay
 
- import os
 
- from scattnlay import scattnlay
 
- import numpy as np
 
- size = np.linspace(0.1, 100., 1000)
 
- x = np.vstack(( 0.1**(1.0/3.0)*size,
 
-                 0.36**(1.0/3.0)*size,
 
-                 0.404**(1.0/3.0)*size,
 
-                 0.7706**(1.0/3.0)*size,
 
-                 size)).transpose()
 
- m = np.array((1.8 + 1.7j, 0.8 + 0.7j, 1.2 + 0.09j,
 
-               2.8 + 0.2j, 1.5 + 0.4j), dtype = np.complex128)
 
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
 
- result = np.vstack((x[:, 4], Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo)).transpose()
 
- try:
 
-     import matplotlib.pyplot as plt
 
-     plt.figure(1)
 
-     plt.subplot(311)
 
-     plt.plot(x[:, 4], Qext, 'k')
 
-     plt.ylabel('Qext')
 
-     plt.subplot(312)
 
-     plt.plot(x[:, 4], Qsca, 'r')
 
-     plt.ylabel('Qsca')
 
-     plt.subplot(313)
 
-     plt.plot(x[:, 4], Albedo, 'g')
 
-     plt.ylabel('Albedo')
 
-     plt.xlabel('X')
 
-     
 
-     plt.show()
 
- finally:
 
-     np.savetxt("test01.txt", result, fmt = "%.5f")
 
-     print(result)
 
 
  |