main.py 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2019 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. # Copyright (C) 2013-2019 Konstantin Ladutenko <kostyfisik@gmail.com>
  6. #
  7. # This file is part of scattnlay
  8. #
  9. # This program is free software: you can redistribute it and/or modify
  10. # it under the terms of the GNU General Public License as published by
  11. # the Free Software Foundation, either version 3 of the License, or
  12. # (at your option) any later version.
  13. #
  14. # This program is distributed in the hope that it will be useful,
  15. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. # GNU General Public License for more details.
  18. #
  19. # The only additional remark is that we expect that all publications
  20. # describing work using this software, or all commercial products
  21. # using it, cite at least one of the following references:
  22. # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
  23. # a multilayered sphere," Computer Physics Communications,
  24. # vol. 180, Nov. 2009, pp. 2348-2354.
  25. # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
  26. # calculation of electromagnetic near-field for a multilayered
  27. # sphere," Computer Physics Communications, vol. 214, May 2017,
  28. # pp. 225-230.
  29. #
  30. # You should have received a copy of the GNU General Public License
  31. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  32. from scattnlay_mp_ import scattcoeffs_, scattnlay_, fieldnlay_
  33. import numpy as np
  34. def scattcoeffs(x, m, nmax=-1, pl=-1):
  35. """
  36. scattcoeffs(x, m[, nmax, pl])
  37. Calculate the scattering coefficients required to calculate both the
  38. near- and far-field parameters.
  39. x: Size parameters (1D or 2D ndarray)
  40. m: Relative refractive indices (1D or 2D ndarray)
  41. nmax: Maximum number of multipolar expansion terms to be used for the
  42. calculations. Only use it if you know what you are doing, otherwise
  43. set this parameter to -1 and the function will calculate it.
  44. pl: Index of PEC layer. If there is none just send -1
  45. Returns: (terms, an, bn)
  46. with
  47. terms: Number of multipolar expansion terms used for the calculations
  48. an, bn: Complex scattering coefficients
  49. """
  50. if len(m.shape) != 1 and len(m.shape) != 2:
  51. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  52. if len(x.shape) == 1:
  53. if len(m.shape) == 1:
  54. return scattcoeffs_(x, m, nmax=nmax, pl=pl)
  55. else:
  56. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  57. elif len(x.shape) != 2:
  58. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  59. if nmax == -1:
  60. nstore = 0
  61. else:
  62. nstore = nmax
  63. terms = np.zeros((x.shape[0]), dtype=int)
  64. an = np.zeros((0, nstore), dtype=complex)
  65. bn = np.zeros((0, nstore), dtype=complex)
  66. for i, xi in enumerate(x):
  67. if len(m.shape) == 1:
  68. mi = m
  69. else:
  70. mi = m[i]
  71. terms[i], a, b = scattcoeffs_(xi, mi, nmax=nmax, pl=pl)
  72. if terms[i] > nstore:
  73. nstore = terms[i]
  74. an.resize((an.shape[0], nstore))
  75. bn.resize((bn.shape[0], nstore))
  76. an = np.vstack((an, a))
  77. bn = np.vstack((bn, b))
  78. return terms, an, bn
  79. #scattcoeffs()
  80. def scattnlay(x, m, theta=np.zeros(0, dtype=float), nmax=-1, pl=-1):
  81. """
  82. scattnlay(x, m[, theta, nmax, pl])
  83. Calculate the actual scattering parameters and amplitudes.
  84. x: Size parameters (1D or 2D ndarray)
  85. m: Relative refractive indices (1D or 2D ndarray)
  86. theta: Scattering angles where the scattering amplitudes will be
  87. calculated (optional, 1D ndarray)
  88. nmax: Maximum number of multipolar expansion terms to be used for the
  89. calculations. Only use it if you know what you are doing.
  90. pl: Index of PEC layer.
  91. Returns: (terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2)
  92. with
  93. terms: Number of multipolar expansion terms used for the calculations
  94. Qext: Efficiency factor for extinction
  95. Qsca: Efficiency factor for scattering
  96. Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)
  97. Qbk: Efficiency factor for backscattering
  98. Qpr: Efficiency factor for the radiation pressure
  99. g: Asymmetry factor (g = (Qext-Qpr)/Qsca)
  100. Albedo: Single scattering albedo (Albedo = Qsca/Qext)
  101. S1, S2: Complex scattering amplitudes
  102. """
  103. if len(m.shape) != 1 and len(m.shape) != 2:
  104. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  105. if len(x.shape) == 1:
  106. if len(m.shape) == 1:
  107. return scattnlay_(x, m, theta, nmax=nmax, pl=pl)
  108. else:
  109. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  110. elif len(x.shape) != 2:
  111. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  112. if len(theta.shape) != 1:
  113. raise ValueError('The scattering angles (theta) should be a 1-D NumPy array.')
  114. terms = np.zeros((x.shape[0]), dtype=int)
  115. Qext = np.zeros((x.shape[0]), dtype=float)
  116. Qsca = np.zeros((x.shape[0]), dtype=float)
  117. Qabs = np.zeros((x.shape[0]), dtype=float)
  118. Qbk = np.zeros((x.shape[0]), dtype=float)
  119. Qpr = np.zeros((x.shape[0]), dtype=float)
  120. g = np.zeros((x.shape[0]), dtype=float)
  121. Albedo = np.zeros((x.shape[0]), dtype=float)
  122. S1 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  123. S2 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  124. for i, xi in enumerate(x):
  125. if len(m.shape) == 1:
  126. mi = m
  127. else:
  128. mi = m[i]
  129. terms[i], Qext[i], Qsca[i], Qabs[i], Qbk[i], Qpr[i], g[i], Albedo[i], S1[i], S2[i] = scattnlay_(xi, mi, theta, nmax=nmax, pl=pl)
  130. return terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2
  131. #scattnlay()
  132. def fieldnlay(x, m, xp, yp, zp, nmax=-1, pl=-1):
  133. """
  134. fieldnlay(x, m, xp, yp, zp[, theta, nmax, pl])
  135. Calculate the actual scattering parameters and amplitudes.
  136. x: Size parameters (1D or 2D ndarray)
  137. m: Relative refractive indices (1D or 2D ndarray)
  138. xp: Array containing all X coordinates to calculate the complex
  139. electric and magnetic fields (1D ndarray)
  140. nmax: Maximum number of multipolar expansion terms to be used for the
  141. calculations. Only use it if you know what you are doing.
  142. pl: Index of PEC layer.
  143. Returns: (terms, E, H)
  144. with
  145. terms: Number of multipolar expansion terms used for the calculations
  146. E, H: Complex electric and magnetic field at the provided coordinates
  147. """
  148. if len(m.shape) != 1 and len(m.shape) != 2:
  149. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  150. if len(x.shape) == 1:
  151. if len(m.shape) == 1:
  152. return fieldnlay_(x, m, xp, yp, zp, nmax=nmax, pl=pl)
  153. else:
  154. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  155. elif len(x.shape) != 2:
  156. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  157. terms = np.zeros((x.shape[0]), dtype=int)
  158. E = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  159. H = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  160. for i, xi in enumerate(x):
  161. if len(m.shape) == 1:
  162. mi = m
  163. else:
  164. mi = m[i]
  165. terms[i], E[i], H[i] = fieldnlay_(xi, mi, xp, yp, zp, nmax=nmax, pl=pl)
  166. return terms, E, H
  167. #fieldnlay()