main.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2019 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. # Copyright (C) 2013-2019 Konstantin Ladutenko <kostyfisik@gmail.com>
  6. #
  7. # This file is part of scattnlay
  8. #
  9. # This program is free software: you can redistribute it and/or modify
  10. # it under the terms of the GNU General Public License as published by
  11. # the Free Software Foundation, either version 3 of the License, or
  12. # (at your option) any later version.
  13. #
  14. # This program is distributed in the hope that it will be useful,
  15. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. # GNU General Public License for more details.
  18. #
  19. # The only additional remark is that we expect that all publications
  20. # describing work using this software, or all commercial products
  21. # using it, cite at least one of the following references:
  22. # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
  23. # a multilayered sphere," Computer Physics Communications,
  24. # vol. 180, Nov. 2009, pp. 2348-2354.
  25. # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
  26. # calculation of electromagnetic near-field for a multilayered
  27. # sphere," Computer Physics Communications, vol. 214, May 2017,
  28. # pp. 225-230.
  29. #
  30. # You should have received a copy of the GNU General Public License
  31. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  32. from scattnlay_ import scattcoeffs_, scattnlay_, fieldnlay_
  33. import numpy as np
  34. import sys
  35. def switch_to_double_precision():
  36. from scattnlay_ import scattcoeffs_, scattnlay_, fieldnlay_
  37. sys.modules['scattnlay.main'].scattnlay_ = scattnlay_
  38. sys.modules['scattnlay.main'].scattcoeffs_ = scattcoeffs_
  39. sys.modules['scattnlay.main'].fieldnlay_ = fieldnlay_
  40. def switch_to_multiple_precision():
  41. from scattnlay_mp_ import scattcoeffs_, scattnlay_, fieldnlay_
  42. sys.modules['scattnlay.main'].scattnlay_ = scattnlay_
  43. sys.modules['scattnlay.main'].scattcoeffs_ = scattcoeffs_
  44. sys.modules['scattnlay.main'].fieldnlay_ = fieldnlay_
  45. def scattcoeffs(x, m, nmax=-1, pl=-1):
  46. """
  47. scattcoeffs(x, m[, nmax, pl])
  48. Calculate the scattering coefficients required to calculate both the
  49. near- and far-field parameters.
  50. x: Size parameters (1D or 2D ndarray)
  51. m: Relative refractive indices (1D or 2D ndarray)
  52. nmax: Maximum number of multipolar expansion terms to be used for the
  53. calculations. Only use it if you know what you are doing, otherwise
  54. set this parameter to -1 and the function will calculate it.
  55. pl: Index of PEC layer. If there is none just send -1
  56. Returns: (terms, an, bn)
  57. with
  58. terms: Number of multipolar expansion terms used for the calculations
  59. an, bn: Complex scattering coefficients
  60. """
  61. if len(m.shape) != 1 and len(m.shape) != 2:
  62. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  63. if len(x.shape) == 1:
  64. if len(m.shape) == 1:
  65. return scattcoeffs_(x, m, nmax=nmax, pl=pl)
  66. else:
  67. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  68. elif len(x.shape) != 2:
  69. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  70. if nmax == -1:
  71. nstore = 0
  72. else:
  73. nstore = nmax
  74. terms = np.zeros((x.shape[0]), dtype=int)
  75. an = np.zeros((0, nstore), dtype=complex)
  76. bn = np.zeros((0, nstore), dtype=complex)
  77. for i, xi in enumerate(x):
  78. if len(m.shape) == 1:
  79. mi = m
  80. else:
  81. mi = m[i]
  82. terms[i], a, b = scattcoeffs_(xi, mi, nmax=nmax, pl=pl)
  83. if terms[i] > nstore:
  84. nstore = terms[i]
  85. an.resize((an.shape[0], nstore))
  86. bn.resize((bn.shape[0], nstore))
  87. an = np.vstack((an, a))
  88. bn = np.vstack((bn, b))
  89. return terms, an, bn
  90. #scattcoeffs()
  91. def scattnlay(x, m, theta=np.zeros(0, dtype=float), nmax=-1, pl=-1):
  92. """
  93. scattnlay(x, m[, theta, nmax, pl])
  94. Calculate the actual scattering parameters and amplitudes.
  95. x: Size parameters (1D or 2D ndarray)
  96. m: Relative refractive indices (1D or 2D ndarray)
  97. theta: Scattering angles where the scattering amplitudes will be
  98. calculated (optional, 1D ndarray)
  99. nmax: Maximum number of multipolar expansion terms to be used for the
  100. calculations. Only use it if you know what you are doing.
  101. pl: Index of PEC layer.
  102. Returns: (terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2)
  103. with
  104. terms: Number of multipolar expansion terms used for the calculations
  105. Qext: Efficiency factor for extinction
  106. Qsca: Efficiency factor for scattering
  107. Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)
  108. Qbk: Efficiency factor for backscattering
  109. Qpr: Efficiency factor for the radiation pressure
  110. g: Asymmetry factor (g = (Qext-Qpr)/Qsca)
  111. Albedo: Single scattering albedo (Albedo = Qsca/Qext)
  112. S1, S2: Complex scattering amplitudes
  113. """
  114. if len(m.shape) != 1 and len(m.shape) != 2:
  115. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  116. if len(x.shape) == 1:
  117. if len(m.shape) == 1:
  118. return scattnlay_(x, m, theta, nmax=nmax, pl=pl)
  119. else:
  120. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  121. elif len(x.shape) != 2:
  122. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  123. if len(theta.shape) != 1:
  124. raise ValueError('The scattering angles (theta) should be a 1-D NumPy array.')
  125. terms = np.zeros((x.shape[0]), dtype=int)
  126. Qext = np.zeros((x.shape[0]), dtype=float)
  127. Qsca = np.zeros((x.shape[0]), dtype=float)
  128. Qabs = np.zeros((x.shape[0]), dtype=float)
  129. Qbk = np.zeros((x.shape[0]), dtype=float)
  130. Qpr = np.zeros((x.shape[0]), dtype=float)
  131. g = np.zeros((x.shape[0]), dtype=float)
  132. Albedo = np.zeros((x.shape[0]), dtype=float)
  133. S1 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  134. S2 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex)
  135. for i, xi in enumerate(x):
  136. if len(m.shape) == 1:
  137. mi = m
  138. else:
  139. mi = m[i]
  140. terms[i], Qext[i], Qsca[i], Qabs[i], Qbk[i], Qpr[i], g[i], Albedo[i], S1[i], S2[i] = scattnlay_(xi, mi, theta, nmax=nmax, pl=pl)
  141. return terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2
  142. #scattnlay()
  143. def fieldnlay(x, m, xp, yp, zp, nmax=-1, pl=-1):
  144. """
  145. fieldnlay(x, m, xp, yp, zp[, theta, nmax, pl])
  146. Calculate the actual scattering parameters and amplitudes.
  147. x: Size parameters (1D or 2D ndarray)
  148. m: Relative refractive indices (1D or 2D ndarray)
  149. xp: Array containing all X coordinates to calculate the complex
  150. electric and magnetic fields (1D ndarray)
  151. nmax: Maximum number of multipolar expansion terms to be used for the
  152. calculations. Only use it if you know what you are doing.
  153. pl: Index of PEC layer.
  154. Returns: (terms, E, H)
  155. with
  156. terms: Number of multipolar expansion terms used for the calculations
  157. E, H: Complex electric and magnetic field at the provided coordinates
  158. """
  159. if len(m.shape) != 1 and len(m.shape) != 2:
  160. raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.')
  161. if len(x.shape) == 1:
  162. if len(m.shape) == 1:
  163. return fieldnlay_(x, m, xp, yp, zp, nmax=nmax, pl=pl)
  164. else:
  165. raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.')
  166. elif len(x.shape) != 2:
  167. raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.')
  168. terms = np.zeros((x.shape[0]), dtype=int)
  169. E = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  170. H = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex)
  171. for i, xi in enumerate(x):
  172. if len(m.shape) == 1:
  173. mi = m
  174. else:
  175. mi = m[i]
  176. terms[i], E[i], H[i] = fieldnlay_(xi, mi, xp, yp, zp, nmax=nmax, pl=pl)
  177. return terms, E, H
  178. #fieldnlay()