123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- //******************************************************************************
- // Copyright (C) 2009-2022 Ovidio Pena <ovidio@bytesfall.com>
- // Copyright (C) 2013-2022 Konstantin Ladutenko <kostyfisik@gmail.com>
- //
- // This file is part of scattnlay
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // The only additional remark is that we expect that all publications
- // describing work using this software, or all commercial products
- // using it, cite at least one of the following references:
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- // a multilayered sphere," Computer Physics Communications,
- // vol. 180, Nov. 2009, pp. 2348-2354.
- // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie
- // calculation of electromagnetic near-field for a multilayered
- // sphere," Computer Physics Communications, vol. 214, May 2017,
- // pp. 225-230.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program. If not, see <http://www.gnu.org/licenses/>.
- //******************************************************************************
- #include <complex>
- #include <cstdio>
- #include <iostream>
- #include <stdexcept>
- #include <string>
- #include <vector>
- #include "nmie.hpp"
- //******************************************************************************
- // This is the main function of 'scattnlay', here we read the parameters as
- // arguments passed to the program which should be executed with the following
- // syntaxis:
- // ./fieldnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...]
- // -p xi xf nx yi yf ny zi zf nz [-c comment]
- //
- // When all the parameters were correctly passed we setup the integer L (the
- // number of layers) and the arrays x and m, containing the size parameters and
- // refractive indexes of the layers, respectively and call the function nMie.
- // If the calculation is successful the results are printed with the following
- // format:
- //
- // 'X, Y, Z, Ex.r, Ex.i, Ey.r, Ey.i, Ez.r, Ez.i, Hx.r, Hx.i, Hy.r, Hy.i, Hz.r,
- // Hz.i'
- //
- //******************************************************************************
- int main(int argc, char* argv[]) {
- try {
- std::vector<std::string> args;
- args.assign(argv, argv + argc);
- std::string error_msg(std::string("Insufficient parameters.\nUsage: ") +
- args[0] +
- " -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] " +
- " -p xi xf nx yi yf ny zi zf nz [-c comment]\n");
- enum mode_states {
- read_L,
- read_x,
- read_mr,
- read_mi,
- read_xi,
- read_xf,
- read_nx,
- read_yi,
- read_yf,
- read_ny,
- read_zi,
- read_zf,
- read_nz,
- read_comment
- };
- // for (auto arg : args) std::cout<< arg <<std::endl;
- std::string comment;
- int has_comment = 0;
- unsigned int L = 0;
- std::vector<double> x, Xp, Yp, Zp;
- std::vector<std::complex<double> > m;
- std::vector<std::vector<std::complex<double> > > E, H;
- double xi = 0.0, xf = 0.0, yi = 0.0, yf = 0.0, zi = 0.0, zf = 0.0;
- double dx = 0.0, dy = 0.0, dz = 0.0;
- int nx = 0, ny = 0, nz = 0;
- long total_points = 0;
- if (argc < 5)
- throw std::invalid_argument(error_msg);
- int mode = -1;
- double tmp_mr;
- for (const auto& arg : args) {
- // For each arg in args list we detect the change of the current
- // read mode or read the arg. The reading args algorithm works
- // as a finite-state machine.
- // Detecting new read mode (if it is a valid -key)
- if (arg == "-l") {
- mode = read_L;
- continue;
- }
- if (arg == "-p") {
- if ((mode != read_x) && (mode != read_comment))
- throw std::invalid_argument(std::string("Unfinished layer!\n") +
- error_msg);
- mode = read_xi;
- continue;
- }
- if (arg == "-c") {
- if ((mode != read_x) && (mode != read_nz))
- throw std::invalid_argument(
- std::string("Unfinished layer or theta!\n") + error_msg);
- mode = read_comment;
- continue;
- }
- // Reading data. For invalid date the exception will be thrown
- // with the std:: and catched in the end.
- if (mode == read_L) {
- L = std::stoi(arg);
- mode = read_x;
- continue;
- }
- if (mode == read_x) {
- x.push_back(std::stod(arg));
- mode = read_mr;
- continue;
- }
- if (mode == read_mr) {
- tmp_mr = std::stod(arg);
- mode = read_mi;
- continue;
- }
- if (mode == read_mi) {
- m.emplace_back(tmp_mr, std::stod(arg));
- mode = read_x;
- continue;
- }
- if (mode == read_xi) {
- xi = std::stod(arg);
- mode = read_xf;
- continue;
- }
- if (mode == read_xf) {
- xf = std::stod(arg);
- mode = read_nx;
- continue;
- }
- if (mode == read_nx) {
- nx = std::stoi(arg);
- mode = read_yi;
- continue;
- }
- if (mode == read_yi) {
- yi = std::stod(arg);
- mode = read_yf;
- continue;
- }
- if (mode == read_yf) {
- yf = std::stod(arg);
- mode = read_ny;
- continue;
- }
- if (mode == read_ny) {
- ny = std::stoi(arg);
- mode = read_zi;
- continue;
- }
- if (mode == read_zi) {
- zi = std::stod(arg);
- mode = read_zf;
- continue;
- }
- if (mode == read_zf) {
- zf = std::stod(arg);
- mode = read_nz;
- continue;
- }
- if (mode == read_nz) {
- nz = std::stoi(arg);
- total_points = nx * ny * nz;
- if (total_points <= 0)
- throw std::invalid_argument(
- std::string("Nothing to do! You must define the grid to "
- "calculate the fields.\n") +
- error_msg);
- Xp.resize(total_points);
- Yp.resize(total_points);
- Zp.resize(total_points);
- E.resize(total_points);
- H.resize(total_points);
- for (long i = 0; i < total_points; i++) {
- E[i].resize(3);
- H[i].resize(3);
- }
- continue;
- }
- if (mode == read_comment) {
- comment = arg;
- has_comment = 1;
- continue;
- }
- }
- if ((x.size() != m.size()) || (L != x.size()))
- throw std::invalid_argument(std::string("Broken structure!\n") +
- error_msg);
- if ((m.empty()) || (x.empty()))
- throw std::invalid_argument(std::string("Empty structure!\n") +
- error_msg);
- if (nx == 1)
- dx = 0.0;
- else
- dx = (xf - xi) / (nx - 1);
- if (ny == 1)
- dy = 0.0;
- else
- dy = (yf - yi) / (ny - 1);
- if (nz == 1)
- dz = 0.0;
- else
- dz = (zf - zi) / (nz - 1);
- for (int i = 0; i < nx; i++) {
- for (int j = 0; j < ny; j++) {
- for (int k = 0; k < nz; k++) {
- Xp[i * ny * nz + j * nz + k] = xi + (double)i * dx;
- Yp[i * ny * nz + j * nz + k] = yi + (double)j * dy;
- Zp[i * ny * nz + j * nz + k] = zi + (double)k * dz;
- }
- }
- }
- int nmax = nmie::nField(L, -1, x, m, -1, nmie::Modes::kAll,
- nmie::Modes::kAll, total_points, Xp, Yp, Zp, E, H);
- printf("Number of multipoles used in Mie series nmax=%i\n", nmax);
- if (has_comment)
- printf("%6s\n", comment.c_str());
- if (total_points > 0) {
- printf(
- " X, Y, Z, Ex.r, Ex.i, "
- " Ey.r, Ey.i, Ez.r, Ez.i, Hx.r, "
- " Hx.i, Hy.r, Hy.i, Hz.r, "
- "Hz.i\n");
- for (long i = 0; i < total_points; i++) {
- printf(
- "%10.7f, %10.7f, %10.7f, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, "
- "%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e\n",
- Xp[i], Yp[i], Zp[i], E[i][0].real(), E[i][0].imag(), E[i][1].real(),
- E[i][1].imag(), E[i][2].real(), E[i][2].imag(), H[i][0].real(),
- H[i][0].imag(), H[i][1].real(), H[i][1].imag(), H[i][2].real(),
- H[i][2].imag());
- }
- }
- } catch (const std::invalid_argument& ia) {
- // Will catch if multi_layer_mie fails or other errors.
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
- return -1;
- }
- return 0;
- }
|