123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #!/usr/bin/env python
- # -*- coding: UTF-8 -*-
- #
- # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
- #
- # This file is part of python-scattnlay
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # The only additional remark is that we expect that all publications
- # describing work using this software, or all commercial products
- # using it, cite the following reference:
- # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
- # a multilayered sphere," Computer Physics Communications,
- # vol. 180, Nov. 2009, pp. 2348-2354.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- # This is a test against the program n-mie (version 3a) for the test case
- # distributed by them (extended for x up to 100)
- # n-mie is based in the algorithm described in:
- # Wu Z.P., Wang Y.P.
- # Electromagnetic scattering for multilayered spheres:
- # recursive algorithms
- # Radio Science 1991. V. 26. P. 1393-1401.
- # Voshchinnikov N.V., Mathis J.S.
- # Calculating Cross Sections of Composite Interstellar Grains
- # Astrophys. J. 1999. V. 526. #1.
- # The test consist in 5 layers with the following parameters
- # m1=1.8 i1.7
- # m2=0.8 i0.7
- # m3=1.2 i0.09
- # m4=2.8 i0.2
- # m5=1.5 i0.4
- # v1/Vt=0.1
- # v2/Vt=0.26
- # v3/Vt=0.044
- # v4/Vt=0.3666
- from scattnlay import scattcoeffs
- import numpy as np
- #import example
- size = np.arange(0.25, 100.25, 0.25)
- x = np.vstack(( 0.1**(1.0/3.0)*size,
- 0.36**(1.0/3.0)*size,
- 0.404**(1.0/3.0)*size,
- 0.7706**(1.0/3.0)*size,
- size)).transpose()
- m = np.array((1.8 + 1.7j, 0.8 + 0.7j, 1.2 + 0.09j,
- 2.8 + 0.2j, 1.5 + 0.4j), dtype = np.complex128)
- # for i in range(300):
- # terms, an, bn = scattcoeffs(x, m, 105)
- nmax=105
- an2 = np.zeros((len(size),nmax), dtype = np.complex128)
- bn2 = np.zeros((len(size),nmax), dtype = np.complex128)
- for _ in range(300):
- for i in range(len(size)):
- terms1, an2[i,:], bn2[i,:] = scattcoeffs(x[i,:], m, nmax=nmax)
- # print(an1[:3], bn1[:3])
- # print(an2)
- # print(an)
- # print(terms1)
- # result = np.vstack((x[:, 4], an[:, 0].real, an[:, 0].imag, an[:, 1].real, an[:, 1].imag, an[:, 2].real, an[:, 2].imag,
- # bn[:, 0].real, bn[:, 0].imag, bn[:, 1].real, bn[:, 1].imag, bn[:, 2].real, bn[:, 2].imag)).transpose()
- # try:
- # import matplotlib.pyplot as plt
- # plt.figure(1)
- # for i in range(3):
- # plt.subplot(310 + i + 1)
- # plt.plot(x[:, 4], an[:, i].real, label = "Re(a$_%i$)" % (i + 1))
- # plt.plot(x[:, 4], bn[:, i].real, label = "Re(b$_%i$)" % (i + 1))
- # plt.plot(x[:, 4], an[:, i].imag, label = "Im(a$_%i$)" % (i + 1))
- # plt.plot(x[:, 4], bn[:, i].imag, label = "Im(b$_%i$)" % (i + 1))
- # plt.ylabel('n = %i' % (i + 1))
- # plt.legend()
- # plt.xlabel('X')
-
- # plt.show()
- # finally:
- # np.savetxt("scattcoeffs.txt", result, fmt = "%.5f")
- # print( result[0,:])
|